Skip to main content

Efficient Calculation of Electron States in Self-Assembled Quantum Dots: Application to Auger Relaxation

  • Conference paper
Book cover Quantum Dots: Fundamentals, Applications, and Frontiers

Part of the book series: NATO Science Series ((NAII,volume 190))

  • 1836 Accesses

Abstract

An efficient method for calculation of self-assembled dot states within the effective mass approximation is described and its application to the calculation of Auger relaxation rates is detailed. The method is based on expansion of the dot states in a harmonic oscillator basis whose parameters are optimised to improve the convergence rate. This results in at least an order of magnitude reduction in the number of basis states required to represent electron states accurately compared to the conventional plane wave approach. Auger relaxation rates are calculated for harmonic oscillator model states and exact states for various pyramidal models. The dipole approximation, previously used to calculate Auger rates, is found to be inaccurate by a factor of around 2–3. The harmonic oscillator states do not reproduce the rates for the more realistic pyramidal models very well and even within the set of pyramidal models variations in the dot shape and size can change the rates by up to an order of magnitude. Typical Auger relaxation rates are on a picosecond timescale but the actual value is strongly dependent on the density of electrons outside the dot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Petroff, A. Lorke, and A. Imamoglu. Epitaxially self-assembled quantum dots. Physics Today 54(5): 46–52, 2001.

    Google Scholar 

  2. M. Grundmann, O. Stier, and D. Bimberg. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic-structure,” Phys. Rev. B 52: 11969–11981, 1995.

    Article  Google Scholar 

  3. M. A. Cusack, P. R. Briddon, and M. Jaros. Electronic structure of InAs/GaAs self-assembled quantum dots. Phys. Rev. B. 54: R2300–R2303, 1996.

    Article  Google Scholar 

  4. J. A. Barker and E. P. O'Reilly. The influence of inter-diffusion on electron states in quantum dots. Physica E 4: 231–237, 1999.

    Article  Google Scholar 

  5. J. A. Barker and E. P. O'Reilly. Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots. Phys. Rev. B bf 61: 13840–13851, 2000.

    Article  Google Scholar 

  6. M. Roy and P. A. Maksym (2003). Efficient method for calculating electronic states in self-assembled quantum dots. Phys. Rev. B 68: art. no. 235308 (2003)

    Google Scholar 

  7. D. Chaney, M. Roy, P. A. Maksym, and F. Long. The effect of self-assembled quantum dot geometry on Auger relaxation rate. Proc. 26th Int. Conf. on the Physics of Semiconductors, edited by A. R. Long and J. H. Davies (Bristol, IOP Publishing, 2003).

    Google Scholar 

  8. A. V. Uskov, F. Adler, H. Schweizer, and M. H. Pikuhn. Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. J. Appl. Phys. 81: 7895–7899, 1997.

    Article  Google Scholar 

  9. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce and T. S. Jones. Composition of InAs quantum dots on GaAs(001): Direct evidence for (In,Ga)As alloying,” Phys. Rev. B 58: R15981–R15984, 1998.

    Article  Google Scholar 

  10. N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, and C. K. Shih. Nonuniform composition profile in In0.5Ga0.5As alloy quantum dots. Phys. Rev. Lett. 84:334–337, 2000.

    Article  PubMed  Google Scholar 

  11. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O'Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84: 733–736, 2000.

    Article  PubMed  Google Scholar 

  12. D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, M. S. Skolnick, M. Hopkinson, F. Long, S. P. A. Gill, and J. H.Wolter. Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunnelling microscopy. Appl. Phys. Lett. 81: 1708–1710, 2002.

    Article  Google Scholar 

  13. M. R. Bruni, A. Lapiccirella, G. Scavia, M. G. Simeone, S. Viticoli, and N. Tomassini. Thermodynamic study of molecular-beam epitaxial-growth of In-GaAs/GaAs strained layer superlattices. Thermochemica Acta. 210, 49–65, 1992.

    Article  Google Scholar 

  14. L. R. C. Fonseca, J. L. Jimenez, J. P. Leburton, and R. M. Martin. Selfconsistent calculation of the electronic structure and electron-electron interaction in self-assembled InAs-GaAs quantum dot structures,” Phys. Rev. B 57:4017–4026, 1998.

    Article  Google Scholar 

  15. O. Stier, M. Grundmann, and D. Bimberg. Electronic and optical properties of strained quantum dots modelled by 8-band k · p theory. Phys. Rev. B 59:5688–5701, 1999.

    Article  Google Scholar 

  16. D. Morris, N. Perret and S. Fafard. Carrier energy relaxation by means of Auger processes in InAs/InGaAs self-assembled quantum dots. Appl. Phys. Lett. 75: 3593–3595, 1999.

    Article  Google Scholar 

  17. B. Liu, Q. Li, Z. Xu and W. E. Ge. Detection of efficient carrier capture in ultrathin InAs/GaAs layers using a degenerate pump-probe technique. J. Phys: Condens. Matter 13: 3923–3930, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Chaney, D., Roy, M., Maksym, P.A. (2005). Efficient Calculation of Electron States in Self-Assembled Quantum Dots: Application to Auger Relaxation. In: Joyce, B.A., Kelires, P.C., Naumovets, A.G., Vvedensky, D.D. (eds) Quantum Dots: Fundamentals, Applications, and Frontiers. NATO Science Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3315-X_16

Download citation

Publish with us

Policies and ethics