Skip to main content

Control of Bovine Spongiform Encephalopathy by Genetic Engineering: Possible Approaches and Regulatory Considerations

  • Conference paper
Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries

Abstract

Transmissible spongiform encephalopathies (TSE) include bovine spongiform encephalopathy (BSE), scrapie in sheep and Creutzfeldt-Jakob disease (CJD) in humans. A new CJD variant (nvCJD) is believed to be related to consumption of meat from BSE cattle. In TSE individuals, prion proteins (PrP) with approximately 250 amino acids convert to the pathogenic prion PrPSc, leading to a dysfunction of the central neural system. Research elsewhere with mice has indicated a possible genetic engineering approach to the introduction of BSE resistance: individuals with amino acid substitutions at positions 167 or 218, inoculated with a pathogenic prion protein, did not support PrPSc replication. This raises the possibility of producing prion-resistant cattle with a single PrP amino acid substitution. Since prion-resistant animals might still harbour acquired prion infectivity, regulatory assessment of the engineered animals would need to ascertain that such possible ‘carriers’ do not result in a threat to animal and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron, T.G., Madec, J.Y., Calavas, D., Richard, Y. & Barillet F. 2000. Comparison of French natural scrapie isolates with bovine spongiform encephalopathy and experimental scrapie-infected sheep. Neuroscience Letters, 284: 175–178.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Burns, C.S., Aronoff-Spencer, E., Dunham, C.M., Lario, P., Avdevich, N.I., Antholine, W.E., Olmstead, M.M., Vrierlink, A., Gerfen, G.J., Peisach, J., Scott, W.G. & Millhauser, G.L. 2000. Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry, 41: 3991–4001.

    Google Scholar 

  • Csaba, P. 2001. Yeast prions and evolvability. Trends in Genetics, 17: 167–169.

    Google Scholar 

  • Fischer, M.B., Roeckl, C., Parizek, P., Schwartz H.P. & Aguzzi, A. 2000. Binding of disease-associated protein to plasminogen. Nature, 408: 479–483.

    PubMed  CAS  ISI  Google Scholar 

  • Gu, J., Fujioka, H., Mishra, R.S., Li, R. & Singh, N. 2000. Prion peptide 106-126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. Journal of Biological Chemistry, 277: 2275–2286.

    Google Scholar 

  • Laszlo, L., Lowe, J., Self, T., Kenwards, N., Landon, M., McBride, T., Farquhar, C., McConnell, I., Brown, J., Hope, J. & Mayer, R.J. 1992. Lysosomes as key organelles in the pathogenesis of prion encephalopathies. Journal of Pathology, 166: 333–341.

    Article  PubMed  CAS  ISI  Google Scholar 

  • OIE [Office International D’Epizooties]. 2002. Available at: http://www.oie.int/eng/info/en_esbinicidence.htm

    Google Scholar 

  • Pan, K.-M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I. & Hunag, Z. 1993. Conversion of alpha-helices into beta-sheets features in the formation of scrapie prion protein. Proceedings of the National Academy of Sciences, USA, 90: 10692–10966.

    Google Scholar 

  • Parry, H.B. 1979. Elimination of natural scrapie in sheep by sire genotype selection. Nature, 277: 127–129.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Perrier, V., Kaneko, K., Safar, J., Vergara, J., Tremblay, P., Dearmond, S.J., Cohen, F.E., Prusiner, S.B. & Wallace, A.C. 2002. Dominant-negative inhibition of prion replication in transgenic mice. Proceedings of the National Academy of Sciences, USA, 99: 13079–13084.

    Article  CAS  Google Scholar 

  • Prusiner, S.B. 1997. Prion diseases and the BSE crisis. Science, 278: 245–251.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Prusiner, S.B. 1991. Molecular biology of prion diseases. Science, 252: 1515–1522.

    PubMed  CAS  ISI  Google Scholar 

  • Prusiner, S.B., Groth, D., Serban, A., Koehler, R., Foster, D., Torchia, M., Burton, D., Yang, S.-L., & Dearmond, S.J. 1993. Ablation of the prion (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proceedings of the National Academy of Sciences, USA, 90: 10608–10612.

    CAS  Google Scholar 

  • Race, R. & Cheesboro, B. 1998. Scrapie infectivity found in resistant species. Nature, 392: 770.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Shibuya, S., Higuchi, J., Shin, R.-W., Tateishi, J. & Kitamoto, T. 1998. Codon 219 Lys allele of PRNP is not found in sporadic Creuztfeldt-Jakob disease. Annals of Neurology, 43: 826–828.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Telling, G.C., Scott, M., Mastrianni, J., Gabizon, R., Torchia, M., Cohen, F.F., Dearmond, S.J. & Prusiner S.B. 1995. Prion propagation in mice expressing human and chimeric PrP transgenes implicates interaction of cellular with PrP with another protein. Cell, 83: 79–90.

    Article  PubMed  CAS  ISI  Google Scholar 

  • CJD Surveillance Unit. 2002. CJD Surveillance Unit, University of Edinburgh, Scotland, UK. Data as of November 2002. See: www.cjd.ed.ac.uk/figures/htm

    Google Scholar 

  • Willesmith, J.W., Wells, G.A.H., Cranwell, M.P. & Ryan, J.M.B. 1998. Bovine spongiform encephalopathy: epidemiological studies. Veterinary Record, 123: 638–644.

    Google Scholar 

  • Wrathall, A.E., Brown, K.F.D, Sayers, A.R., Wells, G.A.H, Simmons, M.M., Farrelly, S.S.J., Bellerby, P., Squirrell, L.J., Spencer, Y.I., Wells, M., Stack, M.J., Bastiman, B., Pullar, D., Scatcherd, J., Heasman, L., Parker, J., Hannam, D.A.R., Helliwell, D.W., Chree, A. & Fraser, H. 2002. Studies of embryo transfer from cattle clinically infected by bovine spongiform encephalopathy (BSE). Veterinary Record, 150: 365–378.

    PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IAEA

About this paper

Cite this paper

Gavora, J., Kochhar, H., Gifford, G. (2005). Control of Bovine Spongiform Encephalopathy by Genetic Engineering: Possible Approaches and Regulatory Considerations. In: Makkar, H.P., Viljoen, G.J. (eds) Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3312-5_39

Download citation

Publish with us

Policies and ethics