Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 122))

Abstract

The most important and complicated operations during a tethered satellite system mission are deployment and retrieval of a subsatellite from or to a space ship. The deployment process has been treated in [15]. In this paper retrieval is considered. We restrict to the practically important case that the system is moving on a circular Keplerian orbit around the Earth. The main problem during retrieval is that it results in an unstable motion concerning the radial relative equilibrium which is stable for a tether of constant length. The uncontrolled retrieval results in a strong oscillatory motion. Hence for the practically useful retrieval of a subsatellite this process must be controlled. We propose an optimal control strategy using the Maximum Principle to achieve a force controlled retrieval of the tethered subsatellite from the radial relative equilibrium position far away from the space ship to the radial relative equilibrium position close to the space ship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Abdel-Rahman and A.H. Nayfeh, ‘Pendulation reduction in boom cranes using cable length manipulation’, Nonlinear Dynamics, 27, 255–269, 2002.

    Article  MATH  Google Scholar 

  2. P. Bainum and V.K. Kumar, ‘Optimal control of the shuttle-tethered-subsatellite system’, Acta Astronautica, 7, 1333–1348, 1980.

    Article  MATH  Google Scholar 

  3. B. Barkow, A. Steindl, H. Troger and G. Wiedermann, ‘Some methods of controlling the deployment of a tethered satellite’, Int. J. Vibration and Control, 9, 187–208, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Beardsley, ‘The way to go in Space’, Scientific American, pp. 40–77 February 1999.

    Google Scholar 

  5. V.V. Beletsky and E.M. Levin, ‘Dynamics of space tether systems’, Advances of the Astronautical Sciences, 83, 1993.

    Google Scholar 

  6. F.L. Chernousko, ‘Dynamics of retrieval of a space tethered system’, J. Appl. Maths. Mechs, 59, 165–173, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.P. Hoyt, R.L. Forward, G.D. Nordley and C.W. Uphoff, ‘Rapid interplanetary tether transport systems’, IAF-99-A.5.10, 50th IAF Congress Amsterdam, 31 pages, 1999.

    Google Scholar 

  8. M. Krupa, A. Kuhn, W. Poth, M. Schagerl, A. Steindl, W. Steiner, H. Troger and G. Wiedermann, ‘Tethered satellite systems: A new concept of space flight’, Eur J. Mech. A/Solids 19, S145–S164, 2000.

    Google Scholar 

  9. M. Krupa, M. Schagerl, A. Steindl and H. Troger, ‘Stability of relative equilibria. Part I: Comparison of four methods”, Meccanica 35, 325–351, 2001.

    Article  MathSciNet  Google Scholar 

  10. M. Krupa, A. Steindl and H. Troger, ‘Stability of relative equilibria. Part II: Dumbell satellites’, Meccanica 35, 353–371, 2001.

    Article  MathSciNet  Google Scholar 

  11. A.K. Misra and V.J. Modi, ‘Deployment and retrieval of shuttle supported tethered satellites’, J. Guidance and Control, 5, 278–285, 1982.

    Article  MATH  Google Scholar 

  12. ‘Proceedings of the fourth international conference on tethers in space’, Science and Technology Corporation, Hampton, VA, 1995.

    Google Scholar 

  13. W. Steiner, A. Steindl and H. Troger, ‘Dynamics of a space tethered satellite system with two rigid endbodies’, Science and Technology Corporation, Hampton, VA, in [12], 1367–1379, 1995.

    Google Scholar 

  14. W. Steiner, A. Steindl and H. Troger, ‘Center manifold approach to the control of a tethered satellite system,’ Applied Mathematics and Computation, 70, 315–327, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Steindl and H. Troger, ‘Optimal control of deployment of a tethered subsatellite’, Nonlinear Dynamics, 31, 257–274, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Wiedermann, M. Schagerl, A. Steindl and H. Troger, ‘Computation of force controlled deployment and retrieval of a tethered satellite system by the finite element method’, in Proceedings of ECCM’99, W. Wunderlich (ed.), pp. 410–429, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Steindl, A., Steiner, W., Troger, H. (2005). Optimal Control of Retrieval of a Tethered Subsatellite. In: Rega, G., Vestroni, F. (eds) IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics. Solid Mechanics and its Applications, vol 122. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3268-4_41

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3268-4_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3267-7

  • Online ISBN: 978-1-4020-3268-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics