Skip to main content

The Use of Aqueous Humic Substances for in-situ Remediation of Contaminated Aquifers

  • Conference paper
Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice

Part of the book series: NATO Science Series ((NAIV,volume 52))

Abstract

This chapter provides a review of the literature on binding of organic contaminants by aqueous humic substances (AHSs). Colloidal dispersions of AHSs are shown to be potential carriers (flushing agents) for enhanced removal of hydrophobic organic contaminants from aquifers. The process involves binding of contaminants by AHSs which can enhance the apparent solubility and mobility of contaminants. Binding, often modelled as linear partitioning, may vary with aqueous concentrations of contaminants and/or AHSs, and other parameters. Evidence is mixed whether aggregation of AHSs at high concentrations increases or decreases their capacity to carry organic contaminants. Sorption of contaminants and AHSs to solid aquifer particles and co-aggregation of AHSs with inorganic colloids/clays are also important, potentially clogging pores and reducing aquifer permeability. Advanced numerical models (e.g., BIONAPL/3D), which include binding/sorption kinetics and in situ biodegradation, can now be used to simulate carrier-assisted transport of contaminants in aquifers.

This chapter includes a discussion of a case study: a unique 5-year laboratory test, in which diesel fuel within a pilot-scale model sand aquifer was flushed with water containing 0.8 g/L AHSs (Aldrich® humic acid). AHS flushing increased aqueous concentrations of methylated naphthalenes from diesel two to ten fold. As a direct consequence, in situ biodegradation of the methylated naphthalenes increased. As hydrocarbons were depleted from the diesel, the contaminant plume shrank and disappeared. Numerical simulations using BIONAPL/3D indicated that without AHS flushing, complete diesel dissolution would have taken about 6 times longer.

Practical recommendations on use of AHS as flushing agents are given. The use of AHSs at levels > 1 g/L would most effectively flush hydrophobic contaminants (e.g., PAHs). Inexpensive, naturally-derived, non-toxic commercial humic products may offer significant advantages compared to other chemical flushing agents (e.g., surfactants). It may be possible to use AHSs for a combination of flushing, enhanced bioremediation and/or sequestration of organic contaminants in aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Abdul, A. S., Gibson, T. L. and Rai, D. N. (1990) Use of humic acid solution to remove organic contaminants from hydrogeologic systems, Environ. Sci. Technol. 24, 328–333.

    Article  CAS  Google Scholar 

  2. Alborzfar, M., Villumsen, A. and Gron, C. (2001) Artificial recharge of humic ground water, J. Environ. Qual. 30, 200–209.

    CAS  Google Scholar 

  3. Au, K-K., Penisson, A. C., Yang, S. and O'Melia, C. R. (1999) Natural organic matter at oxide/water interfaces: Complexation and conformation, Geochim. Cosmochim. Acta 63, 2903–2917.

    Article  CAS  Google Scholar 

  4. Avena, M. J. and Koopal, L. K. (1998) Desorption of humic acids from an iron oxide surface, Environ. Sci. Technol. 32, 2572–2577.

    Article  CAS  Google Scholar 

  5. Balcke G. U., Georgi, A., Woszidlo, S., Kopinke, F.-D. and Poerschmann, J. (2005) Utilization of immobilized humic organic matter for in situ subsurface remediation, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 10, pp. 203–232 (this volume).

    Google Scholar 

  6. Boving, T. B. and Brusseau, M. L. (2000) Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents, J. Contam. Hydrol. 42, 51–67.

    Article  CAS  Google Scholar 

  7. Burkhard, L.P. (2000) Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals, Environ. Sci. Technol. 34, 4663–4668.

    Article  CAS  Google Scholar 

  8. Chen, Y. and Tarchitzky, J. (1999) Humic substances and pH effects on clay dispersion and the hydraulic conductivity of soils. Program with Abstracts, Humic Substances Seminar III, March 22–23, 1999, Northeastern University, Boston, p. 12.

    Google Scholar 

  9. Chien, Y.-Y., Kim, E.-G. and Bleam, W. F. (1997) Paramagnetic relaxation of atrazine solubilized by humic micellar solutions, Environ. Sci. Technol. 31, 3204–3208.

    Article  CAS  Google Scholar 

  10. Chiou, C. T., Malcolm, R. L., Brinton, T. I. and Kile, D. E. (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids, Envir. Sci. Technol. 20, 502–508.

    Article  CAS  Google Scholar 

  11. Chiou, C. T., Kile, D. E., Brinton, T. I., Malcolm, R. L. and Leenheer, J. A. (1987) A comparison of the water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids, Environ. Sci. Technol. 21, 1231–1234.

    Article  CAS  Google Scholar 

  12. Chiou, C. T., Kile, D. E., Rutherford, D. W., Sheng, G. and Boyd, S. A. (2000) Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity, Environ. Sci. Technol. 34, 1254–1258.

    Article  CAS  Google Scholar 

  13. Corapcioglu, M. Y. and Jiang, S. (1993) Colloid-facilitated groundwater contaminant transport, Water Resour. Res. 29, 2215–2226.

    Article  CAS  Google Scholar 

  14. Corapcioglu, M. Y. and Wang, S. (1999) Dual-porosity groundwater contaminant transport in the presence of colloids, Water Resour. Res. 35, 3261–3273.

    Article  CAS  Google Scholar 

  15. Couillard, D. (1994) The use of peat in wastewater treatment, Water Res. 28, 1261–1274.

    Article  CAS  Google Scholar 

  16. Degueldre, C., Triay, I., Kim, J.-I., Vilks, P., Laaksoharju, M. and Miekeley, N. (2000) Groundwater colloid properties: a global approach, Appl. Geochem. 15, 1043–1051.

    Article  CAS  Google Scholar 

  17. Ding, J.-Y. and Wu, S.-C. (1997) Transport of organochlorine pesticides in soil columns enhanced by dissolved organic carbon, Wat. Sci. Tech. 35, 139–145.

    Article  CAS  Google Scholar 

  18. Doll, T. E., Frimmel, F. H., Kumke, M. U. and Ohlenbusch, G. (1999) Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC) — comparison of fluorescence quenching and solid phase micro extraction (SPME), Fresenius J. Anal. Chem. 362, 313–319.

    Article  Google Scholar 

  19. Dunnivant, F. M., Jardine, P. M., Taylor, D. L. and McCarthy, J. F. (1992) Cotransport of cadmium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer material, Environ. Sci. Technol. 26, 360–368.

    Article  CAS  Google Scholar 

  20. Dunnivant, F. M., Jardine, P. M., Taylor, D. L. and McCarthy, J. F. (1992) Transport of naturally occurring dissolved organic carbon in laboratory columns containing aquifer material, Soil Sci. Soc. Am. J. 56, 437–444.

    Article  CAS  Google Scholar 

  21. Essaid, H.L, and Bekins, B. (1997) BIOMOC, A Multispecies Solute — Transport Model with Biodegradation, U.S. Geological Survey, Water-Resources Investigations Report 97-4022, Menlo Park, CA.

    Google Scholar 

  22. Field, J.A. and Cervantes, F.J. (2005) Microbial redox reactions mediated by humus and structurally related quinones, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 17, pp. 343–352 (this volume).

    Google Scholar 

  23. Frimmel, F. H. (1998) Characterization of natural organic matter as major constituents in aquatic systems, J. Contam. Hydrol. 35, 201–216.

    Article  CAS  Google Scholar 

  24. Gaffney, J. S., Marley, N. A. and Clark, S. B. (eds.) (1996) Humic and Fulvic Acids, Isolation, Structure and Environmental Role, ACS Symposium Series 651, American Chemical Society, Washington, DC.

    Google Scholar 

  25. Goss, K.-U. and Schwarzenbach, R.P. (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds, Environ. Sci. Technol. 35, 1–9.

    Article  CAS  Google Scholar 

  26. Gounaris, V., Anderson, P.R. and Holsen, T.M. (1993) Characteristics and environmental significance of colloids in landfill leachate, Environ. Sci. Technol. 27, 1381–1387.

    Article  CAS  Google Scholar 

  27. Gu, B., Schmitt, J., Chen, Z., Liang, L. and McCarthy, J.F. (1994) Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models, Environ. Sci. Technol. 28, 38–46.

    Article  CAS  Google Scholar 

  28. Guetzloff, T.F., and Rice, J.A. (1994) Does humic adic form a micelle? Sci. Total Environ. 152, 31–35.

    Article  CAS  Google Scholar 

  29. Guetzloff, T.F. and Rice, J.A. (1996). Micellar nature of humic colloids, in J.S. Gaffiey, N.A. Marley and S.B. Clark (eds.), Humic and Fulvic Acids, Isolation, Structure and Environmental Role, ACS Symposium Series 651, American Chemical Society, Washington, DC, pp. 18–25.

    Google Scholar 

  30. Haberhauer, G., Bednar, W., Gerzabek, M.H. and Rosenberg, E. (1999) MALDI-TOF-MS analysis of humic substances — A new approach to obtain additional structural information? in E.A. Ghabbour and G. Davies (eds.), Understanding Humic Substances, Advanced Methods, Properties and Applications, Royal Society of Chemistry, Cambridge, UK, pp. 121–128.

    Google Scholar 

  31. Hayes, M.H.B. (1998) Humic substances: Progress towards more realistic concepts of structures, in G. Davies, and E.A. Ghabbour (eds.), Humic Substances, Structures, Properties and Uses, Royal Soc. Chem., Cambridge, pp. 1–27.

    Google Scholar 

  32. Hoffmnan G.L., Nikols D.J., Stuhec S. and Wilson, R.A. (1993) Evaluation of leonardite (humalite) resources of Alberta, Open File Report 93-18, Alberta Geological Survey, Edmonton, AB. Prepared by Retread Resources Ltd. (Calgary, AB) for Energy, Mines and Resources Canada.

    Google Scholar 

  33. Hutchins, S.R., Tomson, M.B., Bedient, P.B. and Ward, C.H. (1985) Fate of trace organic during land application of municipal wastewater, CRC Crit. Rev. Environ. Control 15, 355–416.

    Article  CAS  Google Scholar 

  34. Ibaraki, M., and Sudicky, E.A. (1995) Colloid-facilitated contaminant transport in discretely fractured porous media. 1. Numerical formulation and sensitivity analysis, Wat. Resour. Res. 31, 2945–2960.

    Article  CAS  Google Scholar 

  35. Jalvert, C.T. (1996) Surfactants/cosolvents, Technology Evaluation Report TE-96-02, Ground-Water Remediation Technologies Analysis Centre, Pittsburg, PA. (http:/www.gwrtac.org).

    Google Scholar 

  36. Ji, W. and Brusseau, M. L. (1998) A general mathematical model for chemical-enhanced flushing of soil contaminated by organic compounds, Water Resour. Res. 34, 1635–1648.

    Article  CAS  Google Scholar 

  37. Johnson, W.P. and Amy, G.L. (1995) Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments, Environ. Sci. Technol. 29, 807–817.

    Article  CAS  Google Scholar 

  38. Johnson, W.P., John, W.W. (1999) PCE solubilization by commercial humic acid. J. Contam. Hydrol. 35, 343–362.

    Article  CAS  Google Scholar 

  39. Johnson, W.P. (2000) Sediment control of facilitated transport and enhanced desorption, J. Environ. Eng. 126, 47–56.

    Article  CAS  Google Scholar 

  40. Johnson, W.P., Amy, G.L. and Chapra, S.C. (1995) Modeling of NOM-facilitated PAH transport through low-foc sediment, J. Environ. Eng. 121, 438–446.

    Article  CAS  Google Scholar 

  41. Johnson-Logan, L.R., Broshears, R.E. and Klaine, S.J. (1992) Partitioning behavior and the mobility of chlordane in groundwater, Environ. Sci. Technol. 26, 2234–2239.

    Article  CAS  Google Scholar 

  42. Jones, K.D. and Tiller, C.L. (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic, Environ. Sci. Technol. 33, 580–587.

    Article  CAS  Google Scholar 

  43. Knabner, P., Totsche, K.U. and Kögel-Knabner, I. (1996) The modeling of reactive solute transport with sorption to mobile and immobile sorbents, 1. Experimental evidence and model development, Water Resour. Res. 32, 1611–1622.

    Article  CAS  Google Scholar 

  44. Kögel-Knabner, I., Totsche, K.U. and Raber, B. (2000) Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matter: Effect of solution composition and aging, J. Environ. Qual. 29, 906–916.

    Google Scholar 

  45. Kretzschmar, R., and Sticher, H. (1997) Transport of humic-coated iron oxide colloids in a sandy soil: Influence of Ca2+ and trace metals, Environ. Sci. Technol. 31, 3497–3504.

    Article  CAS  Google Scholar 

  46. Krop, H.B., van Noort, P.C.M. and Govers, H.A.J. (2001) Determination and theoretical aspects of the equilibrium between dissolved organic matter and hydrophobic organic micropollutants in water (Kdoc), Reviews Environ. Contam. Toxicol. 169, 1–122.

    CAS  Google Scholar 

  47. Landrum, P.F., Nihart, S.R., Eadie, B.J. and Gardner, W.S. (1984) Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters, Environ. Sci. Technol. 18, 187–192.

    CAS  Google Scholar 

  48. Larsen, T., Christensen, T.H., Pfeffer, F.M. and Enfield, C.G. (1992) Landfill leachate effects on sorption of organic micropollutants onto aquifer materials, J. Contam. Hydrol. 9(4), 307–324.

    Article  CAS  Google Scholar 

  49. Leppard, G.G. and Buffle, J. (1998) Aquatic colloids and macromolecules: Effects on analyses, in R.A. Meyers (ed.), Encylcopedia of Environmental Analysis and Remediation, John Wiley and Sons, Inc., New York, pp. 349–377.

    Google Scholar 

  50. Lesage, S., Novakowski, K.S., Xu, H., Bickerton, G., Durham, L. and Brown, S. (1995) A large scale aquifer model to study the removal of aromatic hydrocarbons from the saturated zone, Proceedings, Solutions '95, International Association of Hydrogeologists Congress, June 4–10, Edmonton, AB.

    Google Scholar 

  51. Lesage, S., Brown, S., Millar, K. and Novakowski, K. S. (2001) Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: Developing a sustainable technology, J. Environ. Sci. Health A36(8), 1515–1533.

    CAS  Google Scholar 

  52. Li, A.Z., Marx, K.A., Walker, J. and Kaplan, D.L. (1997) Trinitrotoluene and metabolites binding to humic acid, Environ Sci Technol. 31, 584–589.

    Article  CAS  Google Scholar 

  53. Liu, H., and Amy, G. (1993) Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater, Environ. Sci. Technol. 27, 1553–1562.

    Article  CAS  Google Scholar 

  54. Lovley, D.R., Woodward, J.C. and Chapelle, F.H. (1996) Rapid anaerobic benzene oxidation with a variety of chelated Fe(ml1) forms, Appl. Environ. Microbiol. 62, 288–291.

    CAS  Google Scholar 

  55. Lueking, A.D., Huang, W., Soderholm-Schwarz, S., Kim, M. and Weber, W.J., Jr. (2000) Relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability, J. Environ. Qual. 29, 317–323.

    CAS  Google Scholar 

  56. MacKay, A.A., and Gschwend, P.M. (2001) Enhanced concentrations of PAHs in groundwater at a coal tar site, Environ. Sci. Technol. 35, 1320–1328.

    Article  CAS  Google Scholar 

  57. Mackay, D., Shiu, W.Y., Maijanen, A., and Feenstra, S. (1991) Dissolution of non-aqueous phase liquids in groundwater, J. Contam. Hydrol. 8, 23–42.

    Article  CAS  Google Scholar 

  58. Magee, B.R., Lion, L.W., and Lemley, A.T. (1991) Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media, Environ. Sci. Technol. 25, 323–331.

    Article  CAS  Google Scholar 

  59. Margesin, R. and Schinner, F. (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate, Chemosphere 38, 3463–3472.

    Article  CAS  Google Scholar 

  60. Mbagwu, J.S.C., Piccolo, A., and Mbila, M.O. (1993) Water-stability of aggregates of some tropical soils treated with humic substances, Pedologie 43, 269–284.

    CAS  Google Scholar 

  61. McCarthy, J.F., Gu, B., Liang, L. and Mas-Pla, J. (1996) Field tracer tests on the mobility of natural organic matter in a sandy aquifer, Water Resour. Res. 32, 1223–1238.

    Article  CAS  Google Scholar 

  62. McCarthy, J.F. and Zachara, J. M. (1989) Subsurface transport of contaminants: Binding to mobile and immobile phases in groundwater aquifers, Environ. Sci. Technol. 23, 496–504.

    CAS  Google Scholar 

  63. McCray, J.E. and Brusseau, M.L. (1998) Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: Mass-removal effectiveness, Environ. Sci. Technol. 32, 1285–1293.

    Article  CAS  Google Scholar 

  64. Molson, J.W., Frind, E.O., Van Stempvoort, D.R. and Lesage, S. (2002) Humic acid enhanced remediation of an emplaced diesel source in groundwater: 2. Numerical model development and application, J. Contam. Hydrol. 54, 277–305.

    Article  CAS  Google Scholar 

  65. Murphy, E.M., Zachara, J.M. and Smith, S.C. (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds, Environ. Sci. Technol. 24, 1507–1516.

    Article  CAS  Google Scholar 

  66. Namjesnik-Dejanovic, K, Maurice, P.A., Aiken, G.R., Cabaniss, S., Chin, Y.-P. and Pullin, M.J. (2000) Adsorption and fractionation of muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8, Soil Sci. 165, 545–559.

    Article  CAS  Google Scholar 

  67. Olson, E.S., Diehl, J.W. and Froelich, M.L. (1988) Hydrosols from low rank coals. 1. Preparation and properties, Fuel 67, 1053–1061.

    Article  CAS  Google Scholar 

  68. Perminova, I.V., Grechischeva, N.Y. and Petrosyan, V.S. (1999) Relationship between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors, Environ. Sci. Technol. 33, 3781–3787.

    Article  CAS  Google Scholar 

  69. Pfiefer, T., Klaus, U., Hoffmann, R. and Spiteller, M. (2001) Characterization of humic substances using atmospheric pressure chemical ionization and electrospray ionisation mass spectrometry combined with size-exclusion chromatography, J. Chromat. A 926, 151–159.

    Google Scholar 

  70. Piccolo, A. (1994) Interactions between organic pollutants and humic substances in the environment, in N. Senesi and T.H. Miano (eds.), Humic Substances in the Global Environment and Implications on Human Health, Elsevier, Amsterdam, Netherlands, pp. 961–980.

    Google Scholar 

  71. Poerschmann, J. and Kopinke, F.-D. (2001) Sorption of very hydrophobic organic compounds (VHOCs) on dissolved humic organic matter (DOM). 2. Measurement of sorption and application of a Flory-Huggins concept to interpret the data, Environ. Sci. Technol. 35, 1142–1148.

    Article  CAS  Google Scholar 

  72. Rav-Acha, C. and Rebhun, M. (1992) Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment, Wat. Res. 26, 1645–1654.

    Article  CAS  Google Scholar 

  73. Rebhun, M., de Smet, F. and Rwetabula, J. (1996) Dissolved humic substances for remediation of sites contaminated by organic pollutants, Wat. Res. 30, 2027–2038.

    Article  CAS  Google Scholar 

  74. Rebhun, M., Meir, S. and Laor, Y. (1998) Using dissolved humic acid to remove hydrophobic contaminants from water by complexation-flocculation process, Environ. Sci. Technol. 32, 981–986.

    Article  CAS  Google Scholar 

  75. Rifai, H.S., Newell, C.J., Gonzales, J.R., Dendrou, S., Kennedy, L. and Wilson, J. (1997) BIOPLUME III. Natural Attenuation Decision Support System Version 1.0, Users Manual, Prepared for the U.S. Air Force Centre for Environmental Excellence, Brooks Air Force Base, San Antonio, TX.

    Google Scholar 

  76. Roote, D.S. (1998) In Situ Flushing. Technology Status Report, TS-98-01, Ground-Water Remediation Technologies Analysis Centre, Pittsburg, PA.

    Google Scholar 

  77. Sabljic, A. (2001) QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk, Chemosphere 43, 363–375.

    Article  CAS  Google Scholar 

  78. Schimpf, M.E. and Petteys, M.P. (1997) Characterization of humic materials by flow field-flow fractionation, Colloids and Surfaces, A: Physicochem. and Eng. Aspects 120, 87–100.

    Article  CAS  Google Scholar 

  79. Schlautman, M.A. and Morgan, J.J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials, Environ. Sci. Technol. 27, 961–969.

    Article  CAS  Google Scholar 

  80. Schmitt, P., Freitag, D., Trapp, L, Garrison, A., Schiavon, M. and Kettrup, A. (1997) Binding of s-triazines to dissolved humic substances: Electrophoretic approaches using affinity capillary electrophoresis (ACE) and micellar electrokinetic chromatography (MEKC), Chemosphere 35, 55–75.

    Article  CAS  Google Scholar 

  81. Senesi, N. (1992) Binding mechanisms of pesticides to soil humic substances, Sci. Total Environ. 123/124, 63–76.

    Article  Google Scholar 

  82. Shimizu, Y., Sogabe, H. and Terashima, Y. (1998) The effects of colloidal humic substances on the movement of non-ionic hydrophobic organic contaminants in groundwater, Water Sci. Tech. 38, 159–167.

    Article  CAS  Google Scholar 

  83. Specht, C.H., Kumke, M.U. and Frimmel, F.H. (2000) Characterization of NOM adsorption to clay minerals by size exclusion chromatography, Wat. Res. 34, 4063–4069.

    Article  CAS  Google Scholar 

  84. Sun, N., Sun, N.-Z., Elimelech, M. and Ryan, J.N. (2001) Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media, Wat. Resour. Res. 37, 209–222.

    Article  CAS  Google Scholar 

  85. Swift, R.S. (1999) Macromolecular properties of soil humic substances: fact, fiction and opinion, Soil Sci. 164, 790–802.

    Article  CAS  Google Scholar 

  86. Tatalovich, M.E., Lee, K.Y. and Chrysikopoulos, C.V. (2000) Modeling the transport of contaminants originating from the dissolution of DNAPL pools in aquifers in the presence of dissolved humic substances, Transport in Porous Media 38(1–2), 93–115.

    Article  CAS  Google Scholar 

  87. Temminghoff, E.J.M., van der Zee, S.E.A.T.M. and de Haan, F.A.M. (1997) Copper mobility in copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter, Environ. Sci. Technol. 31, 1109–1115.

    Article  CAS  Google Scholar 

  88. Tipping, E. (1986) Some aspects of the interactions between particulate oxides and aquatic humic substances, Marine Chem. 18, 161–169.

    Article  CAS  Google Scholar 

  89. Tombácz, E. and Rice, J.A. (1999) Changes of colloidal state in aqueous systems of humic acids, in E.A. Ghabbour and G. Davies (eds.), Understanding Humic Substances, Advanced Methods, Properties and Applications, Royal Society of Chemistry, Cambridge, UK, pp. 69–78.

    Google Scholar 

  90. Totsche, K.U., Danzer, J. and Kögel-Knabner, I. (1997) Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments, J. Environ. Qual. 26, 1090–1100.

    Article  CAS  Google Scholar 

  91. Uhle, M.E., Chin, Y.-P., Aiken, G.R. and McKnight, D.M. (1999) Binding of polychlorinated biphenyls to aquatic humic substances: the role of substrate and sorbate properties on partitioning, Environ. Sci. Technol. 33, 2715–2718.

    Article  CAS  Google Scholar 

  92. (1999) Treatment Technologies: Annual Status Report, Ninth Edition, United States Environmental Protection Agency (USEPA), Washington, DC.

    Google Scholar 

  93. Van Stempvoort, D.R. and Lesage, S. (2002) Binding of methylated naphthalenes to concentrated aqueous humic acid, Adv. Environ. Res. 6, 495–504.

    Article  Google Scholar 

  94. Van Stempvoort, D.R., Lesage, S., Novakowski, K S., Millar, K., Brown, S. and Lawrence, J.R (2002) Humic acid enhanced remediation of an emplaced diesel source in groundwater: 1. Laboratory-based pilot scale test, J. Contam. Hydrol. 54, 249–276.

    Article  Google Scholar 

  95. Van Stempvoort, D.R., Lesage, S., and Steer, H. (2002) Binding of hydrophobic organic contaminants to humalite-derived aqueous humic products, with implications for remediation, Water Qual. Res. J. Can. 38, 267–281.

    Google Scholar 

  96. Van Stempvoort, D.R, Molson, J.W., Lesage, S. and Brown, S. (2000) Sorption of Aldrich humic acid to a test aquifer material and implications for subsurface remediation, in E.A. Ghabbour and G. Davies (eds.), Humic Substances: Versatile Components of Plants, Soils and Water, Royal Society of Chemistry, Cambridge, UK, pp. 153–163.

    Google Scholar 

  97. Vermeer, A.W.P., van Riemsdijk W.H. and Koopal, L.K. (1998) Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions, Langmuir 14, 2810–2819.

    Article  CAS  Google Scholar 

  98. Vermeer, A.W.P. and Koopal, L.K. (1998) Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption, Langmuir 14, 4210–4216.

    Article  CAS  Google Scholar 

  99. Weber, E.J., Spidle, D.L. and Thorn, K.A. (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies, Environ. Sci. Technol. 30, 2755–2763.

    Article  CAS  Google Scholar 

  100. West, C.C. (1984) Dissolved Organic Carbon Facilitated Transport of Neutral Organic Compounds in Subsurface Systems, Ph.D. Thesis, Rice University, Houston, TX.

    Google Scholar 

  101. Xie, H., Guetzloff, T.F. and Rice, J.A. (1997) Fractionation of pesticide residues bound to humin, Soil Sci. 162, 421–428.

    Article  CAS  Google Scholar 

  102. Xing, B. and Pignatello, J.J. (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter, Environ. Sci. Technol. 31, 792–799.

    Article  CAS  Google Scholar 

  103. Xu H., Lesage S. and Durham, L. (1994) The use of humic acids to enhance removal of aromatic hydrocarbons from contaminated aquifers, in Proceedings, 4th Annual Symposium on Groundwater & Soil Remediation, Calgary, AB, Canada, pp. 635–645.

    Google Scholar 

  104. Yates, L.M. III and von Wandruszka, R. (1999) Decontamination of polluted water by treatment with a crude humic acid blend, Environ. Sci. Technol. 33, 2076–2080.

    Article  CAS  Google Scholar 

  105. Yeh, G.-T., Salvage, K.M., Gwo, J.P., Zachara, J.M. and Szecsody, J.E. (1998) HydroBioGeoChem: A Coupled Model of Hydrologic Transport and Mixed Biogeochemical Kinetic/Equilibrium Reactions in Saturated-Unsaturated Media, Report ORNL/TM-13668, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  106. Yin, C. and Hassett, J. P. (1986) Gas-partitioning approach for laboratory and field studies of mirex fugacity in water, Environ. Sci. Technol. 20, 1213–1217.

    Article  CAS  Google Scholar 

  107. Yuan, G. and Xing, B. (2001) Effects of metal cations on sorption and desorption of organic compounds in humic acids, Soil Sci. 166, 107–115.

    Article  CAS  Google Scholar 

  108. Zhang, Z. and Pawliszyn, J. (1993) Headspace solid phase microextraction, Anal. Chem. 65, 1843–1852.

    Article  CAS  Google Scholar 

  109. Zwiener, C. Kumke, M.U., Abbt-Braun, G. and Frimmel, F. (1999) Adsorbed and bound residues in fulvic acid fractions of a contaminated groundwater: Isolation, chromatographic and spectrographic characterization, Acta Hydrochim. Hydrobiol. 27, 208–213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Canadian Crown

About this paper

Cite this paper

van Stempvoort, D., Lesage, S., Molson, J. (2005). The Use of Aqueous Humic Substances for in-situ Remediation of Contaminated Aquifers. In: Perminova, I.V., Hatfield, K., Hertkorn, N. (eds) Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3252-8_11

Download citation

Publish with us

Policies and ethics