Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 52))

Abstract

An overview is given of the interactions encountered between humic substances (HS), ecotoxicants, and living organisms in the context of environmental remediation. The most important interactions identified include: binding interactions affecting chemical speciation and bioavailability of contaminants; interfacial interactions altering physical speciation or interphase partitioning of ecotoxicants; abiotic-biotic redox interactions that influence metabolic pathways coupled to pollutants; and finally direct and indirect interactions coupled to various physiological functions of living organisms. Because humics are polyfunctional, they can operate as binding agents and detoxicants, sorbents and flushing agents, redox mediators of abiotic and biotic reactions, nutrient carriers, bioadaptogens, and growth-stimulators. It is shown that these functions possess significant utility in the remediation of contaminated environments and as such humic-based reactions pertinent to permeable reactive barriers, in situ flushing, bioremediation, and phytoremediation are examined in detail. Finally, this chapter introduces the novel concept of “designer humics” which are a special class of customized humics of the reduced structural heterogeneity and of the controlled size. They are developed and deployed to carry out one or more of the above in situ functions in an optimum manner and for the purpose of enhancing the efficacy of one or more remediation technologies. Designer humics possess specified reactive properties obtained by chemical modification and cross-linking of the humic backbone. This new class of reactive agents portend new opportunities for achieving enhanced remediation and for quantifying remediation performance. The latter is described in the context of the passive flux meter technology developed for direct measuring fluxes of contaminants and biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. The United Nations Programme of Action from Rio (1993) Agenda 21, Earth Summit, United Nations Publisher.

    Google Scholar 

  2. United Nations Industrial Development Organization (UNIDO), <http://www.unido.org>.

    Google Scholar 

  3. United Nations Environment Programme <http://www.unep.org>.

    Google Scholar 

  4. U.S. Federal Remediation Technologies Roundtable (FRTR), <http://www.frtr.gov>.

    Google Scholar 

  5. U.S. Remediation Technologies Development Forum, <http://www.rtdf.org>.

    Google Scholar 

  6. U.S. EPA's Office of Superfund Remediation and Technology Innovation (OSRTI), <http://www.cluin.org>.

    Google Scholar 

  7. NETC-EPA Ground-Water Remediation Technologies Analysis Center (GWRTAC), <http://www.gwrtac.org>.

    Google Scholar 

  8. U.S. Environmental Protection Agency (EPA) (1999) Groundwater Cleanup: Overview of Operating Experience at 28 Sites, EPA-542-R-99-006, <http://www.clu-in.org>.

    Google Scholar 

  9. U.S. Environmental Protection Agency (EPA) (1999) Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers, EPA-542-R-99-002, <http://www.clu-in.org>.

    Google Scholar 

  10. U.S. Environmental Protection Agency (EPA) (1998) Remediation Case Studies, Volume 8, In Situ Soil Treatment Technologies (Soil Vapor Extraction, Thermal Processes), EPA-542-R-98-012.

    Google Scholar 

  11. U.S. Environmental Protection Agency (EPA) (2001) Cost Analyses for Selected Groundwater Cleanup Projects: Pump and Treat Systems and Permeable Reactive Barriers, EPA 542-R-00-013, <http://www.clu-in.org>.

    Google Scholar 

  12. Hedges, I.J. and Oades, J.M. (1997) Comparative organic geochemistries of soils and marine sediments, Org. Geochem. 27, 319–361.

    Article  CAS  Google Scholar 

  13. Schnitzer, M. and Khan, S.U. (1972) Humic substances in the environment, Marcel Dekker, New York.

    Google Scholar 

  14. Aiken, G.R., McKnight, D.M., and Wershaw, R.L. (eds.) (1985) Humic substances in soil, sediment and water, Wiley, New York.

    Google Scholar 

  15. Orlov, D.S. (1990) Soil humic acids and general theory of humification, Moscow, State University Publisher, (In Russian).

    Google Scholar 

  16. Thurman, E.M. (1985) Organic geochemistry of natural waters, Martinus Nijhof/Dr. W. Junk Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  17. Peat, retrieved October, 2003 from Encyclopædia Britannica Premium Service, <http://www.britannica.com/eb/article?eu=67401>.

    Google Scholar 

  18. Edbrooke, S. (1999) Coal, in Mineral Commodity Report 18, Institute of Geological and Nuclear Sciences Ltd, New Zealand, p. 15.

    Google Scholar 

  19. Sapropel, retrieved October, 2003 from Encyclopædia Britannica Premium Service, <http://www.britannica.com/eb/article?eu=60369>.

    Google Scholar 

  20. Ozdoba, D.M., Blyth, J.C., Engler, R.F., Dinel, H. and Schnitzer, M. (2001) Leonardite and humified organic matter, in Proc Humic Substances Seminar V, Boston, MA, March 21–23, 2001.

    Google Scholar 

  21. Lou, J. (2003) World Estimated Recoverable Coal. United States, Energy Information Administration, <http://www.eia.doe.gov/emeu/iea/table82.html>.

    Google Scholar 

  22. Markov, V.D., Olunin, A.S., Ospennikova, L.A., Skobeeva, E.I., Khoroshev, P.I. (1988) World Peat Resources, Moscow, Nedra (in Russian).

    Google Scholar 

  23. Belyakov, A.S. and Kosov, V.I. (2002) Rational use of peat and sapropel in Russia, Russian State Duma Committee on rational use of nature and resources, Moscow, Russia, <http://www.mineral.ru/Chapters/Production/Issues/18/lssue_Files.html>.

    Google Scholar 

  24. Hayes, M.H.B., MacCarthy, P., Malcolm, R.L., Swift, R.S. (eds) (1989) Humic Substances II: In Search of Structure, Wiley, Chichester.

    Google Scholar 

  25. MacCarthy, P. and Rice, J.A. (1991) An ecological rationale for the heterogeneity of humic substances, in S. H. Schneider, P. J. Boston (eds.), Proceedings of Chapman Conference on the Gaia Hypothesis, San Diego, CA, March 7–11, 1988, MIT Press, Cambridge, pp. 339–345.

    Google Scholar 

  26. Kleinhempel, D. (1970) Albrecht-Thaer-Archiv 14, 3–14.

    CAS  Google Scholar 

  27. Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, Reactions, John Wiley and Sons, Inc., NY.

    Google Scholar 

  28. Clapp, C.E., Hayes, M.H.B., Senesi, N. and Griffith, S.M. (eds.) (1996) Humic Substances and Organic Matter in Soil and Water Environments: Characterization, Transformations and Interactions, IHSS Inc., St. Paul, MN, USA.

    Google Scholar 

  29. Weber, J.H. (1988) Binding and transport of metals by humic materials, in F.H. Frimmel and R.F. Christman (eds.), Humic Substances and Their Role in the Environment, J. Wiley & Sons Ltd, pp. 165–178.

    Google Scholar 

  30. Varshal, G.M., Velyukhanova, T.K. and Koshcheeva, I.Ya. (1993) Geochemical role of humic acids in elements migration, in Humic Substances in Biosphere, Moscow, Nauka, pp. 97–117 (in Russian).

    Google Scholar 

  31. Benedetti, M.F., Van Riemsdijk, W.H., Koopal, L.K., Kinniburgh, D.G., Gooddy, D.C. and Milne, C.J. (1996) Metal ion binding by natural organic matter: from the model to the field, Geochim. Cosmochim. Acta 60(14), 2503–2513.

    Article  CAS  Google Scholar 

  32. Linnik, P.I. and Nabivanets, B.I. (1986) Migration forms of metals in fresh surface waters, Leningrad, Gidrometeoisdat (in Russian).

    Google Scholar 

  33. Croué, J.-P., Benedetti, M.F., Violleau, D. and Leenheer, J.A. (2003) Characterization and copper binding of humic and non-humic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site, Environ. Sci. Technol. 37(2), 328–336.

    Article  CAS  Google Scholar 

  34. Gauthier, T.D., Seitz, W.R., Grant, C.L. (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene KOC values, Environ. Sci. Technol. 21, 243–248.

    Article  CAS  Google Scholar 

  35. McCarthy, J.F. and Jimenez, B.D. (1985) Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation, Environ. Sci. Technol. 19, 1072–1075.

    Article  CAS  Google Scholar 

  36. Gevao, B., Semple, KT. and Jones, KC. (2000) Bound residues in soils: A review, Environmental Pollution 180, 3–14.

    Article  Google Scholar 

  37. Kristoffer, E.N., Jonassen, K.E.N., Nielsen, T. and Hansen, P.E. (2002) The application of high-performance liquid chromatography humic acid columns in determination of Koc of polycyclic aromatic compounds, Environ. Toxicol. Chem. 22(4), 741–745.

    Google Scholar 

  38. Muller-Wegener, U., and Ziechmann, W. (1980) Elektronen-Donator-Akzeptor-Komplexe zwischen aromatischen Stickstoffheterocyclen und Huminsaure, Z. Pflanz. Bodenk. 143, 247–249.

    CAS  Google Scholar 

  39. Senesi, N. and Testini, C. (1982) Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicides by charge-transfer mechanism, Chemosphere 13, 461–468.

    Article  Google Scholar 

  40. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P. and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration, Nature 382, 445–448.

    Article  CAS  Google Scholar 

  41. Lovley, D.R., Fraga, J.L., Coates, J.D., Blunt-Harris, E.L. (1999) Humics as an electron donor for anaerobic respiration, Environ. Microbiol. 1, 89–98.

    Article  CAS  Google Scholar 

  42. Gu, B.H. and Chen, J. (2003) Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions, Geochim. Cosmochim. Acta 67, 3575–3582.

    Article  CAS  Google Scholar 

  43. Bradley, P.M., Chapelle, F.H., and Lovley, D.R. (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene, Appl. Environ. Microbiol. 64, 3102–3105.

    CAS  Google Scholar 

  44. Tratnyek, P.G., and. Macalady, D.L. (1989) Abiotic reduction of nitroaromatic pesticides in anaerobic laboratory systems, J. Agri. Food Chem. 37, 248–254.

    Article  CAS  Google Scholar 

  45. Murphy, E.M., Zachara, J.M., Smith, S.C., and Phillips, J.L. (1992) The sorption of humic acids to mineral surfaces and their role in contaminant binding, Sci. Total Environ. 117/118, 413–423.

    Article  Google Scholar 

  46. Vermeer, A.W.P and Koopal, L.K. (1998) Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption, Langmuir 14, 4210–4216.

    Article  CAS  Google Scholar 

  47. Laird, D.A., Yen, P.Y., Koskinen, W.C., Steinheimer, T.R., and Dowdy, RH. (1994) Sorption of atrazine on soil clay components, Eviron Sci. Technol. 28, 1054–1061.

    Article  CAS  Google Scholar 

  48. Murphy, E. M. and Zachara, J.M. (1995) The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater, Geoderma 67, 103–124.

    Article  CAS  Google Scholar 

  49. Khristeva, L.A. (1970) Theory of humic fertilizers and their practical use in the Ukraine, in Robertson R.A. (ed.), 2-nd International Peat Congress, Leningrad, HMSO, Edinburgh, pp. 543–558.

    Google Scholar 

  50. Nardi, S., Pizzeghello, D., Muscolo, A., and Vianello, A. (2002) Physiological effects of humic substances on higher plants, Soil Biol. Biochem. 34, 1527–1536.

    Article  CAS  Google Scholar 

  51. YuLing, C., Min, C., YunYin, Li, and Xie, Z. (2000) Effect of fulvic acid on ABA, IAA and activities of superoxide dismutase and peridoxase in winter wheat seedling under drought conditions, Plant Physiol. Communications 36, 311–314.

    Google Scholar 

  52. Fukushima, M. and Tatsumi, K. (2001) Functionalities of humic acid for the remedial processes of organic pollutants, Analytical Sci. 17, i821–i823.

    Google Scholar 

  53. Sanjay, H.-G., Fataftah, A.K., Walia, D., Srivastava, K (1999) Humasorb CS: A humic acid-based adsorbent to remove organic and inorganic contaminants, in G. Davies, and E.A. Ghabbour (eds.), Understanding humic substances: advanced methods, properties and applications. Royal Society of Chemistry, Cambridge, pp. 241–254.

    Google Scholar 

  54. Pennington, J.C., Inouye, L.S., McFarland, V.A., Jarvis, A.S., Lutz, C.H., Thorn, K.A., Hayes, C.A., and Porter, B.E. (1999) Explosives conjugation products in remediation matrices: final report prepared for U.S. Army Corps of Engineers, Strategic Environmental Research and Development Program. Technical Report SERDP-99-4, 50 pp.

    Google Scholar 

  55. U.S. Geological Survey (2002) Using humic acids to enhance oxidative bioremediation of chlorinated solvents, <http://toxics.usgs.gov/topics/rem_act/remediation_testing.html>.

    Google Scholar 

  56. U.S. Department of Energy (2002) Factors controlling in situ uranium and technetium bio-reduction and reoxidation at the NABIR Field Research Center, NABIR-2002 award to Istok, J, <http://www.esd.ornl.gov/nabirfrc/>

    Google Scholar 

  57. Sawada, A., Tanaka, S., Fukushima, M., Tatsumi, K (2003) Electrokinetic remediation of clayey soils containing copper(II)-oxinate using humic acid as a surfactant. J. Hazard. Mater, B96, 145–154.

    Article  Google Scholar 

  58. Sara, M.N. (2003) Site assessment and remediation handbook, 2nd Ed. Boca Raton, FL: CRC Press, 1160 pp.

    Google Scholar 

  59. Nyer, E.K (2000) In situ treatment technology, 2nd Ed. Boca Raton, FL: CRC Press, 552 pp.

    Google Scholar 

  60. Vidic, R.D. (2001) Permeable reactive barriers: case study review, Technology evaluation report, GWRTAC, <http://www.gwrtac.org>.

    Google Scholar 

  61. Naftz, D., Morrison, S.J., Fuller, C.C., and Davis, J.A., eds. (2002) Handbook of groundwater remediation using permeable reactive barriers. Applications to radionuclides, trace metals, and nutrients, San Diego, Calif., Academic Press, 539 pp.

    Google Scholar 

  62. Scherer, M.M., Richter, S., Valentine, RL., Alvarez, P.J.J. (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 30, 363–411.

    Article  CAS  Google Scholar 

  63. Balcke, G.U., Georgi, A., Woszidlo, S., Kopinke, F.-D., and Poerschmann, J. (2005) Utilization of immobilized humic organic matter for in situ subsurface remediation, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 10, pp. 203–232 (this volume).

    Google Scholar 

  64. Jalvert, C.T. (1996) Surfactants/cosolvents, Technology Evaluation Report TE-96-02, Ground-Water Remediation Technologies Analysis Centre, Pittsburg, PA. <http://www.gwrtac.org>.

    Google Scholar 

  65. Roote, D.S. (1997) In situ flushing. Technology status report. TS-98-01, Ground-Water Remediation Technologies Analysis Centre, Pittsburg, PA, <http://www.gwrtac.org>.

    Google Scholar 

  66. Van Stempvoort, D., Lesage, S., Molson, J. (2005) The use of aqueous humic substances for in-situ remediation of contaminated aquifers, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 11, pp. 233–265 (this volume).

    Google Scholar 

  67. Lesage, S., Brown, S., Millar, K. and Novakowski, K.S. (2001) Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: Developing a sustainable technology, J. Environ. Sci. Health, A36(8), 1515–1533.

    CAS  Google Scholar 

  68. Van Stempvoort, D.R., Lesage, S., Novakowski, K S., Millar, K., Brown, S. and Lawrence, J.R. (2002) Humic acid enhanced remediation of an emplaced diesel source in groundwater: 1. Laboratory-based pilot scale test, J. Contam. Hydrol. 54, 249–276.

    Article  Google Scholar 

  69. Alexander, M. (1994) Biodegradation and Bioremediation, Academic Press, San Diego.

    Google Scholar 

  70. Cookson, J.T. (1995) Bioremediation Engineering; Design and Application. McGraw Hill, New York.

    Google Scholar 

  71. Van Cauwenberghe, L., and Roote, D.S. (1998) In situ bioremediation. Technology overview report, GWRTAC, <http://www.gwrtac.org>.

    Google Scholar 

  72. Battelle Memorial Inst. (1994) Emerging Technology for Bioremediation of Metals, Boca Raton, FL, CRC Press, 160 pp.

    Google Scholar 

  73. Achtnich, C., Fernandes, E., Bollag, J.-M., Knackmuss, H.-J., Lenke, H. (1999) Covalent binding of reduced metabolites of [15N]TNT to soil organic matter during a bioremediation process analyzed by 15N NMR spectroscopy, Environ. Sci. Technol. 33, 4448–4456.

    Article  CAS  Google Scholar 

  74. Rüttimann-Johnson, C., and Lamar, R.T. (1997) Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi, Soil Biol. Biochem. 29(7), 1143–1148.

    Article  Google Scholar 

  75. Berry, D.F., Boyd S.A. (1985) Decontamination of soil through enhanced formation of bound residues, Environ. Sci. Technol. 19, 1132–1133.

    Article  CAS  Google Scholar 

  76. Gevao, B., Semple, KT., Jones, K.C. (2000) Bound residues in soils: A review, Environ. Pollution 180, 3–14.

    Article  Google Scholar 

  77. Thomas, H., and Gerth, A. (2005) Enhanced humification of TNT, in Perminova, I.V., N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 18, pp. 353–364 (this volume).

    Google Scholar 

  78. Miller, R.R. (1996) Phytoremediation. Technology overview report, GWRTAC, <http://www.gwrtac.org>.

    Google Scholar 

  79. U.S. EPA. (2000) Introduction to phytoremediation. Report EPA/600/R-99/107, National Risk Management Research Laboratory, Office of Research and Development, U.S. EPA, Cincinnati, OH.

    Google Scholar 

  80. Nanda Kumar, P.B.A., Dushenkov, V., Motto, H., Raskin, I. (1995) Phytoextraction: the use of plants to remove heavy metals from soils, Environ. Sci. Technol. 29, 1232–38.

    Article  Google Scholar 

  81. Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L., and Carreira, L.H. (1995) Phytoremediation of organic and nutrient contaminants, Environ. Sci. Technol. 29, 318A–323A.

    CAS  Google Scholar 

  82. Genevini, P.L., Saxxhi, G.A. and Borio, D. (1994) Herbicide effect of atrazine, diuron, linuron and prometon after interaction with humic acids from coal, in N. Senesi and T.M. Miano (eds.), Humic substances in the global environment and implications on human health, Elsevier Science B.V., pp. 1291–1296.

    Google Scholar 

  83. Perminova, I.V., Kovalevsky, D.V., Yashchenko, N.Yu., Danchenko, N.N., Kudryavtsev, A.V., Zhilin, D.M., Petrosyan, V.S., Kulikova, N.A., Philippova, O.I., and Lebedeva, G.F. (1996) Humic substances as natural detoxicants, in C.E. Clapp, M.H.B. Hayes, N. Senesi and S.M. Griffith (eds.), Humic substances and organic matter in soil and water environments: characterization, transformations and interactions, IHSS Inc., St. Paul, MN, USA, pp. 399–406.

    Google Scholar 

  84. Haynes, R.J., and Mokolobate, M.S. (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved, Nutrient Cycling in Agroecosystems 59, 47–63.

    Article  CAS  Google Scholar 

  85. Visser, S.A. (1986) Effects of humic substances on plant growth, in Humic substances, effects on soil and plants, REDA, Rome, pp. 89–135.

    Google Scholar 

  86. Cooper, R.J., Liu, C., and Fisher, D.C. (1998) Influence of humic substances on rooting and nutrient content of creeping bentgrass, Crop Sci. 38, 1639–1644.

    Article  Google Scholar 

  87. Kaschl, A., Chen, Y. (2005) Interactions of humic substances with trace metals and their stimulatory effects on plant growth, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 4, pp. 83–114 (this volume).

    Google Scholar 

  88. Kulikova, N.A., Stepanova, E.V., Koroleva, O.V. (2005) Mitigating activity of humic substances: direct influence on biota, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 14, pp. 285–309 (this volume).

    Google Scholar 

  89. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. (1993) Environmental Organic Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  90. Kopinke, F-D., Georgi, A., Mackenzie, K., Kumke, M. (2002) Sorption and chemical reactions of PAHs with dissolved humic substances and related model polymers, in F.H. Frimmel (ed.), Refractory organic substances in the environment, John Wiley, Heidelberg, Germany, pp. 475–515.

    Google Scholar 

  91. Chiou, C.T., Porter, P.E., Schmedding, D.W. (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water, Environ. Sci. Technol. 17, 227–231.

    Article  CAS  Google Scholar 

  92. Chiou, C.T., Malcolm, RL., Brinton, T.I. and Kile, D.E. (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids, Envir. Sci. Technol. 20, 502–508.

    Article  CAS  Google Scholar 

  93. Doll, T.E., Frimmel, F.H., Kumke, M.U., Ohlenbusch, G. (1999) Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC) — comparison of fluorescence quenching and solid phase microextraction (SPME), Fres. J. Anal. Chem. 364, 313–319.

    Article  CAS  Google Scholar 

  94. Burkhard, L. P., (2000) Estimating dissolved organic carbon partition coefficients for non-ionic organic chemicals, Environ. Sci. Technol. 22, 4663–4668.

    Article  CAS  Google Scholar 

  95. Landrum, P.F., Nihart, S.R., Eadie, B.J. and Gardner, W.S. (1984) Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters, Environ. Sci. Technol. 18, 187–192.

    CAS  Google Scholar 

  96. Kopinke, F.-D., Poerschmann, J., Georgi, A. (1999). Application of SPME to study sorption phenomena on dissolved humic organic matter, in J. Pawliszyn (ed.), Applications of SPME, RSC Chromatographic Monographs, Cambridge, UK, pp 111–128.

    Google Scholar 

  97. Jones, K.D. and Tiller, C.L. (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic, Environ. Sci. Technol. 33, 580–587.

    Article  CAS  Google Scholar 

  98. Schlautman, M.A., and Morgan, J.J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials, Environ. Sci. Technol. 27, 961–969.

    Article  CAS  Google Scholar 

  99. Chin, Y.P., Aiken, G.R., Danielsen, K.M. (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity, Environ. Sci. Technol. 31, 1630–1635.

    Article  CAS  Google Scholar 

  100. Perminova, I.V., Grechishcheva, N.Yu., Petrosyan, V.S. (1999) Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors, Environ. Sci. Technol. 33, 3781–3787.

    Article  CAS  Google Scholar 

  101. McCarthy, J.F., Roberson, L.E., and Burris, L.W. (1989) Association of benzo(a)pyrene with dissolved organic matter: prediction of KDOM from structural and chemical properties of the organic matter. Chemosphere 19(12), 1911–1920.

    Article  CAS  Google Scholar 

  102. Morehead, N.R., Eadie, B.J., Lake, B., Landrum, P.F. and Berner, D. (1986) The sorption of PAH onto dissolved organic matter in lake Michigan waters, Chemosphere 15, 403–412.

    Article  CAS  Google Scholar 

  103. Kulikova, N.A. and Perminova, I.V. (2002) Binding of atrazine to humic substances from soil, peat, and coal related to their structure, Environ. Sci. Technol. 36, 3720–3724.

    Article  CAS  Google Scholar 

  104. Wang, Z., Gamble, D.S., Landford, C.H. (1991) Interaction of atrazine with Laurentian humic acid, Anal. Chim. Acta 244, 135–143.

    Article  CAS  Google Scholar 

  105. Celis, R., Cornejo, J., Hermosin, M.C., Koskinen, W.C. (1998) Sorption of atrazine and simazine by model associations of soil colloids, Soil Sci. Soc. Am. J. 62, 165–171.

    Article  CAS  Google Scholar 

  106. Weber, E.J., Spidle, D.L., Thorn, K.A. (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies, Environ. Sci. Technol. 30, 2755–2763.

    Article  CAS  Google Scholar 

  107. Chiou, C.T., Kile, D.E., Brinton, T.I., Malcolm, R.L., and Leenheer, J.A. (1987) A comparison of the water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids, Environ. Sci. Technol. 21, 1231–1234.

    Article  CAS  Google Scholar 

  108. McCarthy, J.F., Jimenez, B.D., and Barbee, Th. (1985) Effect of dissolved humic material on accumulation of polycyclic aromatic hydrocarbons: structure-activity relationships, Aquat. Toxicol. 7, 15–24.

    Article  CAS  Google Scholar 

  109. Steinberg, C.E.W., Haitzer, M.; Brueggemann, R., Perminova, I.V., and Yashchenko, N.Yu. (2000) Towards a quantitative structure activity relationship (QSAR) of dissolved humic substances as detoxifying agents in freshwaters, Int. Rev. Hydrobiol. 85(2–3), 253–266.

    Article  CAS  Google Scholar 

  110. Leversee, G.J., Landrum, P.F., Giesy, J.P, and Fannin, T. (1983) Humic acids reduce bioaccumulation of some polycyclic aromatic hydrocarbons, Can. J. Fish. Aquat. Sci. 40, 63–69.

    Google Scholar 

  111. Kukkonen, J. (1991) Effect of pH and natural humic substances on the accumulation of organic pollutants in two freshwater invertebrates, in B. Allard (ed.), Humic Substances in the Aquatic and Terrestrial Environment, pp. 413–422.

    Google Scholar 

  112. Landrum, P.F., Reinhold, M.D., Nihart, S.R., and Eadie, B.J. (1985) Predicting the bioavailability of organic xenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter, Environ. Toxicol. Chem. 4, 459–467.

    CAS  Google Scholar 

  113. Gensemer, R.W., Dixon, D.G., and Greenberg, B.M. (1998) Amelioration of the photo-induced toxicity of polycyclic aromatic hydrocarbons by a commercial humic acid, Ecotoxicol. Environ. Safety 39, 57–64.

    Article  CAS  Google Scholar 

  114. Day, K.E. (1991) Effects of dissolved organic carbon on accumulation and acute toxicity of fenvalerate, deltamethrin and cyhalothrin to Daphnia magna (Straus), Environ. Toxicol. Chem. 10, 91–101.

    CAS  Google Scholar 

  115. Kukkonen, J., and Oikari, A. (1987) Effects of aquatic humus on accumulation and toxicity of some organic micropollutants, Sci. Total Environ. 62, 399–402.

    Article  CAS  Google Scholar 

  116. Perminova, I.V., Grechishcheva, N.Yu., Kovalevskii, D.V., Kudryavtsev, A.V., Petrosyan, V.S., and Matorin, D.N. (2001) Quantification and prediction of detoxifying properties of humic substances to polycyclic aromatic hydrocarbons related to chemical binding, Environ. Sci. Technol. 35, 3841–3848.

    Article  CAS  Google Scholar 

  117. Stewart, A.J. (1984) Interactions between dissolved humic materials and organic toxicants, in K.E. Cowser (ed.), Synthetic Fossil Fuel Technologies, Boston, Butterworth Publisher, pp. 505–521.

    Google Scholar 

  118. Oikari, A., Kukkonen, J., and Virtanen, V. (1992) Acute toxicity of chemicals to Daphnia magna in humic waters, Sci. Total Environ. 117/118, 367–377.

    Article  Google Scholar 

  119. Mézin, L.C., Hale, R.C. (2003) Effect of humic acids on toxicity of DDT and chlorpyrifos to freshwater and estuarine invertebrates, Environ. Toxicol. Chem. 23(3), 583–590.

    Article  Google Scholar 

  120. Buffle, J. (1988) Complexation reactions in aquatic systems, Ellis Horwood Ltd.

    Google Scholar 

  121. Perminova, I.V., Kulikova, N.A. Zhilin, D.M., Gretschishcheva, N.Yu., Kholodov, V.A. Lebedeva, G.F., Matorin, D.N., P.S. Venediktov, V.S. Petrosyan. (2004) Mediating effect of humic substances in aquatic and soil environments, in Environmentally-Acceptable Reclamation and Pollution Endpoints: Scientific Issues and Policy Development, NATO Science Series, Kluwer Academic Publisher, Dordrecht, (in press).

    Google Scholar 

  122. Buchwalter, D.B., Linder, G., and Curtis, L.R. (1995) Modulation of cupric ion activity by pH and fulvic acid as determinants of toxicity in Xenopus laevis embryos and larvae, Environ. Toxicol. Chem. 15(4), 568–573.

    Article  Google Scholar 

  123. Lorenzo, J.I., Nieto, O., Beiras, R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus liidus larvae in seawater, Aquatic Toxicol. 58, 27–41.

    Article  CAS  Google Scholar 

  124. Ma, H., Kim, S.D., Cha, D.K., and Allen, H.E. (1998) Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia, Environ. Toxicol. Chem. 18(5), 828–837.

    Google Scholar 

  125. Mandal, R., Hassan, N.M., Murimboh, J., Chakrabarti, C.L., and Back, M. (2002) Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada), Environ. Sci. Technol. 36, 1477–1484.

    Article  CAS  Google Scholar 

  126. Voets, J., Bervoets, L., and Blust, R. (2004) Cadmium bioavailability and accumulation in the presence of humic acid to Zebra mussel, Dreissena polymorpha, Environ. Sci. Technol. 38, 1003–1008.

    CAS  Google Scholar 

  127. Weng, L.P., Wolthoorn, A., Lexmon, T., Temminghoff, E.J.M., and Van Riemsdijk, W.H. (2004) Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models, Environ. Sci. Technol. 38, 156–162.

    Article  CAS  Google Scholar 

  128. Weber, W.J. Jr., Huang, W., Le Boeut E.J. (1999) Geosorbent organic matter and its relationship to the binding and sequestration of organic contaminants, Colloids & Surfaces A. 151, 167–179.

    Article  CAS  Google Scholar 

  129. Moulin, C., Moulin, V. (2004) Fate of actinides in the presence of humic substances under conditions relevant to nuclear waste disposal, Appl. Geochem. 10, 573–580.

    Article  Google Scholar 

  130. Schuessler, W., Artinger, R., Kienzler, B., Kim, J.I. (2000) Conceptual modeling of the humic colloid-borne americium(III) migration by a kinetic approach. Environ. Sci. Technol. 34, 2608–2611.

    Article  CAS  Google Scholar 

  131. Terashima, M., Tanaka, S., Fukushima, M. (2003) Distribution behavior of pyrene to adsorbed humic acids on kaolin, J. Environ. Qual. 32, 591–598.

    CAS  Google Scholar 

  132. Hura, J., Schlautman, M.A. (2004) Effects of mineral surfaces on pyrene partitioning to well-characterized humic substances, J. Environ. Qual. 33, 1733–1742.

    Google Scholar 

  133. Laor, Y., Farmer, W.J., Aochi, Y., Strom, P.F., (1998) Phenanthrene binding and sorption to dissolved and mineral-associated humic acid, Water Res. 32, 1923–1931.

    Article  CAS  Google Scholar 

  134. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. (1993) Environmental organic chemistry, John Wiley & Sons, New York, 680 pp.

    Google Scholar 

  135. Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophobic pollutants on natural sediments, Wat. Res. 13, 241–248.

    Article  CAS  Google Scholar 

  136. Chiou, G., Kile, D., Rutherford, D., Sheng, G., Boyd, S. (2000) Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity, Environ. Sci. Technol. 34, 1254–1258.

    Article  CAS  Google Scholar 

  137. Celis, R., Cornejo, J., Hermosin, M.C. and Koskinen, W.C. (1998) Sorption of atrazine and simazine by model associations of soil colloids, Soil Sci. Soc. Am. J., 62, 165–171.

    Article  CAS  Google Scholar 

  138. Weber, W.J. Jr., Huang, W., Yu, H. (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 2. Effects of soil organic matter heterogeneity, J. Contam Hydrol. 31, 149–165.

    Article  CAS  Google Scholar 

  139. Spurlock, F.C., Biggar, J.W. (1994) Thermodynamics of organic chemical partitioning in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution, Environ. Sci. Technol. 28, 996–1002.

    Article  CAS  Google Scholar 

  140. Von Oepen, B., Kordel, W., Klein, W., Schuurmann, G. (1991) Predictive QSPR models for estimating soil sorption coefficients: potential and limitations based on dominating processes, Sci. Total Environ. 109/110, 343–354.

    Article  Google Scholar 

  141. Huang, W., Weber, W.J. Jr. (1997) A distributed reactivity model for sorption by soil and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains, Environ. Sci. Technol. 31, 2562–69.

    Article  CAS  Google Scholar 

  142. Anmad, R., Kookana, R., Alston, A., Skjemstad, J. (2001) The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy, Environ. Sci. Technol. 35, 878–884.

    Article  CAS  Google Scholar 

  143. LeBoeuf, E.J., Weber, W.J. Jr. (1997) A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model, Environ. Sci. Technol. 31, 1697–1702.

    Article  CAS  Google Scholar 

  144. Xing, B., Pignatello, J.J. (1997) Dual-mode sorption of low polarity compounds in glassy poly(vinylchloride) and soil organic matter, Environ. Sci. Technol. 31, 792–799.

    Article  CAS  Google Scholar 

  145. Leboeuf E., Weber, W. Jr. (2000) Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior, Environ. Sci. Technol. 34, 3632–3640.

    Article  CAS  Google Scholar 

  146. Gunesakara, A.S., Xing, B. (2003) Sorption and desorption of naphthalene by soil organic matter: importance of aromatic and aliphatic components, J. Environ. Qual. 32, 240–246.

    Google Scholar 

  147. Simpson, A., Chefetz, B., Hatcher, P. (2003) Phenanthrene sorption to structurally modified humic acids, J. Environ. Qual. 32, 1750–1758.

    Article  CAS  Google Scholar 

  148. Khalaf, M., Kohl, S.D., Klumpp, E., Rice, J., Tombacz, E. (2003) Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid-state 19F NMR, Environ. Sci. Technol. 37, 2855–60.

    CAS  Google Scholar 

  149. Chefetz, B., Deshmukh, A.P., Hatcher, P.G., Guthrie, E.A. (2000) Pyrene sorption by natural organic matter, Environ. Sci. Technol. 34, 2925–2930.

    Article  CAS  Google Scholar 

  150. Mao, J.D., Hundal, L., Thompson, M., Schmidt-Rohr, K. (2002) Correlation of poly(methylene)-rich amorphous aliphatic domains in humic substances with sorption of a nonpolar organic contaminant phenanthrene, Environ. Sci. Technol. 36, 929–936.

    Article  CAS  Google Scholar 

  151. Salloum, M.J., Chefetz, B., Hatcher, P. (2002) Phenanthrene sorption by aliphatic-rich natural organic matter, Environ. Sci. Technol. 36, 1953–1958.

    Article  CAS  Google Scholar 

  152. Balcke, G.U., Kulikova, N.A., Kopinke, F.-D., Perminova, I.V., Hesse, S., Frimmel, F. H. (2002) Adsorption of humic substances onto kaolin clay related to their structural features, Soil Sci. Soc. Am. J. 66, 1805–1812.

    Article  CAS  Google Scholar 

  153. Visser S.A. (1964) Oxidation-reduction potentials and capillary activities of humic acids, Nature, 204, 581.

    CAS  Google Scholar 

  154. Helburn, R.S., MacCarthy, P. (1994) Determination of some redox properties of humic acid byalkaline ferricyanide titration, Anal. Chim. Acta 295, 263–272.

    Article  CAS  Google Scholar 

  155. Skogerboe, R.K., Wilson, S.A. (1981) Reduction of ionic species by fulvic acid, Anal. Chem. 53, 228–232.

    CAS  Google Scholar 

  156. Oesterberg, R., and Shirshova, L. (1997) Non-equilibrium oscillating redox properties of humic acids, Geochim. Cosmochim. Acta 61, 4599–4604.

    Article  Google Scholar 

  157. Struyk, Z., Sposito, G. (2001) Redox properties of standard humic acids, Geoderma 102, 329–346.

    Article  CAS  Google Scholar 

  158. Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms, Environ. Sci. Technol. 32, 2984–2989.

    Article  CAS  Google Scholar 

  159. Nurmi, J.T. and Tratnyek, P.G. (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles, Environ. Sci. Technol. 36, 617–624.

    Article  CAS  Google Scholar 

  160. Fukusima, M., Nakayasu, K, Tanaka, Sh., Nakamara, H. (1997) Speciation analysis of chromium after reduction of chromium (VI) by humic acid, Toxicol. Environ. Chem. 62, 207–215.

    Article  Google Scholar 

  161. Wittbrodt, P.R. and Palmer, C.D. (1996a) Reduction of Cr(VI) by soil humic acids, Eur. J. Soil Sci. 47, 151–162.

    Article  Google Scholar 

  162. Wittbrodt, P.R. and Palmer, C.D. (1996b) Effect of temperature, ionic strength, background electrolytes and Fe(III) on the reduction of hexavalent chromium by soil humic substances, Environ. Sci. Technol. 30, 2470–2477.

    Article  CAS  Google Scholar 

  163. Zhilin, D.M., Schmitt-Kopplin, P., Perminova, I.V. (2004) Reduction of Cr(VI) by peat and coal humic substances: implication for remediation of contaminated sites, Env. Chem. Let. [Published on-line September 7, 2004].

    Google Scholar 

  164. Bondietti, E.A., Reynolds, S.A., Shanks, M.N. (1976) Transuranic nuclides in the environment, IAEA, Vienna.

    Google Scholar 

  165. Andre, C., Choppin, G.R. (2000) Reduction of Pu(V) by humic acid, Radiochim. Acta 88, 613–616.

    CAS  Google Scholar 

  166. Rao, L., and Choppin, G.R. (1995) Thermodynamic study of the complexation of neptunium(V) with humic acids, Radiochim. Acta 69, 87–95.

    CAS  Google Scholar 

  167. O'Loughlin, E., Ma, H., Burris, D. (2002) Catalytic effects of Ni-humic complexes on the reductive dehalogenation of chlorinated alanes and alkenes, Proceedings of the 11th Int. Meeting of IHSS “Humic substances: nature's most versatile materials”, July 21–26, 2002, Northeastern University, Boston, MS, USA, pp. 415–417.

    Google Scholar 

  168. Field, J.A., and Cervantes, F.J. (2005) Microbial redox reactions mediated by humus and structurally related quinones, in I.V. Perminova, N. Hertkorn, K. Hatfield, Use of humic substances to remediate polluted environments: from theory to practice, Chapter 17, pp. 343–364 (this volume).

    Google Scholar 

  169. Cervantes, F.J., Dijksma, W., Duong-Dac, T., Ivanova, A., Lettinga, G. and Field, J.A. (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors, Appl. Environ. Microbiol. 67, 4471–4478.

    Article  CAS  Google Scholar 

  170. Finneran, K.T., and Lovley, D.R. (2001) Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA), Environ. Sci. Technol. 35, 1785–1790.

    Article  CAS  Google Scholar 

  171. Curtis, G.P., and Reinhard, M. (1994) Reductive dehalogenation of hexachlorethane, carbon-tetrachloride, and bromoform by anthrahydroquinonedisulfonate and humic acid, Environ. Sci. Technol. 28, 2393–2401.

    CAS  Google Scholar 

  172. Keck, A., Klein, J., Kudlich, M., Stolz, A., Knackmuss, H.J. and Mattes, R. (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6, Appl. Environ. Microbiol. 63, 3684–3690.

    CAS  Google Scholar 

  173. Fu, Q.S., Barkovskii, A.L. and Adriaens, P. (1999) Reductive transformation of dioxins: An assessment of the contribution of dissolved organic matter to dechlorination reactions, Environ. Sci. Technol. 33, 3837–3842.

    Article  CAS  Google Scholar 

  174. Fredrickson, J.K., Kostandarithes, H.M., Li, S.W., Plymale, A.E. and Daly, M.J. (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1, Appl. Environ. Microbiol. 66, 2006–2011.

    Article  CAS  Google Scholar 

  175. Finneran, K.T., Anderson, R.T., Nevin, K.P. and Lovley, D.R. (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction, Soil Sedim. Contam. 11, 339–357.

    Article  CAS  Google Scholar 

  176. Lloyd, J.R., and Macaskie, E. (2000) Bioremediation of radionuclide-containing wastewaters, in D.R. Lovley (ed.), Environmental Microbe-Metal Interactions, ASM press, Washington, DC. p. 277–327.

    Google Scholar 

  177. Perminova, I.V., Kovalenko, A.N., Kholodov, V.A., Youdov, M.V., Zhilin, D.M. (2004) Design of humic materials of a desired remedial action, in L. Martin-Neto, D. Milori, W. Silva (eds), Humic substances and soil and water environment, Proceedings of the 12th International Meeting of IHSS, Sao Pedro, Sao Paulo, Brazil, July 25–30, 2004, Sao Pedro, Sao Paulo, Embrapa Instrumentacao Agropecuaria, pp. 506–508.

    Google Scholar 

  178. Bollag, J.-M. (1999) Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite, Environ. Sci. Technol. 33, 2028–2034.

    Article  Google Scholar 

  179. Bollag J.-M., and Mayers C. (1992) Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances, Sci. Total Environ. 117/118, 357–366.

    Article  Google Scholar 

  180. Chen, Y., and Avaid, T. (1990) Effect of humic substances on plant growth, in P. MacCarthy, C.E. Clapp, R.L. Malcom, and P.R. Bloom (eds.), Humic substances in soils and crop science: selected readings, Soil Sci. Soc. Am., Madison, pp. 161–186.

    Google Scholar 

  181. Mackowiak, C.L., Grossl, P.R. and Bugbee, B.G. (2001) Beneficial effects of humic acid on micronutrient availability to wheat, Soil Sci. Soc. Am. J. 65, 1744–1750.

    Article  CAS  Google Scholar 

  182. Visser, S.A. (1986) Effects of humic substances on plant growth, in Humic substances, Effects on Soil and Plants, REDA, Rome, pp. 89–135.

    Google Scholar 

  183. Dehorter, B. and Blondeau, R (1992) Extracellular enzyme activities during humic acid degradation by the white rot fungi Phanerochaete chrysosporium and Trametes versicolor, FEMS Microbiol. Let. 94, 209–216.

    CAS  Google Scholar 

  184. Gramss, G., Ziegenhagen, D., and Sorge, S. (1999) Degradation of soil humic extract by wood-and soil-associated fungi, bacteria, and commercial enzymes, Microbiol. Ecol. 37, 140–151.

    Article  CAS  Google Scholar 

  185. Kirschner, R.A. Jr., Parker, B.C., and Falkinham, J.O. III. (1999) Humic and fulvic acids stimulate the growth of Mycobacterium avium, FEMS Microbiol. Ecol. 30, 327–332.

    CAS  Google Scholar 

  186. Mazhul, V.M., Prokopova, Zh.V., and Ivashkevich, L.S. (1993) Mechanism of peat humic acids action on membrane structural status and functional activity of the yeast cells, in Humic Substances in Biosphere, Moscow, Nauka, pp. 151–157 (in Russian).

    Google Scholar 

  187. Vigneault, B., Percot, A., Lafleur, M., and Campbell, P.G.C. (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances, Environ. Science Technol. 34, 3907–3913.

    Article  CAS  Google Scholar 

  188. Clapp, C.E., Chen, Y., Hayes, M.H.B., Cheng, H.H. (2001) Plant growth promoting activity of humic substances, in R.S. Swift, K.M. Sparks (eds.), Understanding and Managing Organic Matter in Soils, Sediments, and Waters, International Humic Science Society, Madison, pp. 243–255.

    Google Scholar 

  189. Dell'Agnola, G., Ferrari, G., Nardi, S. (1981) Antidote action of humic substances on atrazine inhibition of sulphate uptake in barley roots, Pestic. Biochem. Physiol. 15, 101–104.

    Article  Google Scholar 

  190. Varanini, Z., and Pinton, R., (2001) Direct versus indirect effects of soil humic substances on plant growth and nutrition, in R. Pinton, Z. Varanini, P. Nannipieri (eds.), The Rizosphere, Marcel Dekker, Basel, pp. 141–158.

    Google Scholar 

  191. Vaughan, D., Malcom, R.E., (1985) Influence of humic substances on growth and physiological processes, in D. Vaughan, R.E. Malcom (eds.), Soil Organic Matter and Biological Activity, Martinus Nijhoff/ Junk W, Dordrecht, The Netherlands, pp. 37–76.

    Google Scholar 

  192. Nardi, S., Arnoldi, G., Dell'Agnola, G. (1988) Release of the hormone-like activities from Allolobophora rosea and A. caliginosa faeces, Can. J. Soil Sci. 68, 563–567.

    Article  CAS  Google Scholar 

  193. Nardi, S., Pizzeghello, D., Reniero, F., Rascio, N. (2000) Chemical and biochemical properties of humic substances isolated from forest soils and plant growth, Soil Sci. Soc. Am. J. 64, 639–645.

    Article  CAS  Google Scholar 

  194. Vaughan, D., Ord, B.G., (1981) Uptake and incorporation of 14 C-labelled soil organic matter by roots of Pisum sativum L., J. Exp. Bot. 32, 679–687.

    Google Scholar 

  195. Prat, S. (1963) Permeability of plant tissues to humic acids, Biologia Plantarum 5, 279–283.

    Article  CAS  Google Scholar 

  196. Kovalenko, A., Youdov, M., Perminova I., Petrosyan, V. (2004). Synthesis and characterization of humic derivatives enriched with hydroquinoic and catecholic moieties. In: Humic substances and soil and water environment. Proceedings of the 12 th International Meeting of IHSS. Sao Pedro, Sao Paulo, Brazil, July 25–30, 2004. Martin-Neto, L., Milori, D., Silva, W. (Eds). Sao Pedro, Sao Paulo. Embrapa Instrumentacao Agropecuaria, pp. 472–474.

    Google Scholar 

  197. Kholodov, V.A., Kovalenko, A.N., Kulikova, N.A., Lebedeva, G.F., and Perminova, I.V. (2004) Enhanced detoxifying ability of hydroquinones-enriched humic derivatives with respect to copper, in L. Martin-Neto, D. Milori, D., W. Silva (eds), Humic substances and soil and water environment, Proceedings of the 12th International Meeting of IHSS, Sao Pedro, Sao Paulo, Brazil, July 25–30, 2004, Sao Pedro, Sao Paulo, Embrapa Instrumentacao Agropecuaria, pp. 189–191.

    Google Scholar 

  198. Hatfield, K., Annable, M., Cho, J., Rao, P.S.C., Klammler, H. (2004) A direct method for measuring water and contaminant fluxes in porous media, J. Contam. Hydrol. (in press).

    Google Scholar 

  199. Hatfield, K., Annable, M. (2003) New approach to quantify remediation, in Biotechnology: state of the art and prospects of development, Proceedings of the 2-nd Moscow Int. Congress, Nov. 10–14, 2003, Moscow, Russia, P&I JSC "Maxima" Part II, p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Perminova, I., Hatfield, K. (2005). Remediation Chemistry of Humic Substances: Theory and Implications for Technology. In: Perminova, I.V., Hatfield, K., Hertkorn, N. (eds) Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3252-8_1

Download citation

Publish with us

Policies and ethics