Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biron, C. & Sen, G.C., 2001 Interferons and other cytokines. In Fields Virology, Vol. 1 (Knipe, D. et al. eds.) Lippincott, Williams & Wilkins, Philadelphia, pp.321–351.

    Google Scholar 

  2. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D., 1998, How cells respond to interferons. Annu. Rev. Biochem. 67:227–264

    Article  PubMed  CAS  Google Scholar 

  3. Sen, G.C., 2001, Viruses and interferons. Annu. Rev. Microbiol. 55:255–281

    Article  PubMed  CAS  Google Scholar 

  4. Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H., 1998, Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95:15623–15628

    Article  PubMed  CAS  Google Scholar 

  5. Geiss, G. et al., 2001, A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276:30178–30182

    PubMed  CAS  Google Scholar 

  6. Mossman, K.L. et al., 2001, Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol. 75:750–758

    Article  PubMed  CAS  Google Scholar 

  7. Geiss, G.K. et al., 2002, Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host u innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99:10736–10741

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, H., Cong, J.P., Mamtora, G., Gingeras, T. & Shenk, T., 1998, Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95:14470–14475

    Article  PubMed  CAS  Google Scholar 

  9. Weaver, B.K., Kumar, K.P. & Reich, N.C., 1998, Interferon Regulatory Factor 3 and CREB-Binding Protein/p300 Are Subunits of Double-Stranded RNA-Activated Transcription Factor DRAF1. Mol. Cell. Biol. 18:1359–1368

    PubMed  CAS  Google Scholar 

  10. Bandyopadhyay, S.K., Leonard, G.T., Jr., Bandyopadhyay, T., Stark, G.R. & Sen, G.C., 1995, Transcriptional induction by double-stranded RNA is mediated by interferon-stimulated response elements without activation of interferon-stimulated gene factor 3. J. Biol. Chem. 270:19624–19629

    Article  PubMed  CAS  Google Scholar 

  11. Daly, C. & Reich, N., 1993, Double-stranded RNA activates novel factors that bind to the interferon-stimulated response element. Mol. Cell. Biol. 13:3756–3764

    PubMed  CAS  Google Scholar 

  12. Chang, Y.E. & Laimins, L.A., 2000, Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J. Virol. 74:4174–4182

    Article  PubMed  CAS  Google Scholar 

  13. Geiss, G.K. et al., 2003, Gene expression profiling of the cellular transcriptional network regulated by alpha/beta interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J. Virol. 77:6367–6375

    Article  PubMed  CAS  Google Scholar 

  14. Johnston, C., Jiang, W., Chu, T. & Levine, B., 2001, Identification of genes involved in the host response to neurovirulent alphavirus infection. J. Virol. 75:10431–10445

    Article  PubMed  CAS  Google Scholar 

  15. Levy, D.E. & Darnell, J.E., Jr., 2002, Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3:651–662

    Article  PubMed  CAS  Google Scholar 

  16. Pestka, S., 1997, The interferon receptors. Semin. Oncol. 24:S9-18–S19-40

    Google Scholar 

  17. Darnell, J.E., Jr., Kerr, I.M. & Stark, G.R., 1994, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264:1415–1421

    PubMed  CAS  Google Scholar 

  18. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A., 2001, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413:732–738

    Article  PubMed  CAS  Google Scholar 

  19. Chu, W.M. et al., 1999, JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity. 11:721–731

    Article  PubMed  CAS  Google Scholar 

  20. Williams, B.R., 2001, Signal integration via PKR. Sci STKE. 2001:RE2

    Article  PubMed  CAS  Google Scholar 

  21. Peters, K.L., Smith, H.L., Stark, G.R. & Sen, G.C., 2002, IRF-3-dependent, NFkappa Band JNK-independent activation of the 561 and IFN-beta genes in response to double-stranded RNA. Proc. Natl. Acad. Sci. USA 99:6322–6327

    Article  PubMed  CAS  Google Scholar 

  22. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T., 2003, TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161–167

    Article  PubMed  CAS  Google Scholar 

  23. Aderem, A. & Ulevitch, R.J., 2000, Toll-like receptors in the induction of the innate immune response. Nature. 406:782–787

    Article  PubMed  CAS  Google Scholar 

  24. Akira, S., 2003, Toll-like receptor signaling. J. Biol. Chem. 278:38105–38108

    Article  PubMed  CAS  Google Scholar 

  25. Takeda, K., Kaisho, T. & Akira, S., 2003, Toll-like receptors. Annu. Rev. Immunol. 21:335–376

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar, S.N., Smith, H.L., Rowe, T.M. & Sen, G.C., 2003, Double-stranded RNA Signaling by Toll-like Receptor 3 Requires Specific Tyrosine Residues in Its Cytoplasmic Domain. J. Biol. Chem. 278:4393–4396

    Article  PubMed  CAS  Google Scholar 

  27. Jiang, Z., Mak, T.W., Sen, G. & Li, X., 2004, Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc. Natl. Acad. Sci. USA 101:3533–3538

    Article  PubMed  CAS  Google Scholar 

  28. Fitzgerald, K.A. et al., 2003, IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491–496

    Article  PubMed  CAS  Google Scholar 

  29. Sharma, S. et al., 2003, Triggering the interferon antiviral response through an IKK-related pathway. Science. 300:1148–1151

    Article  PubMed  CAS  Google Scholar 

  30. Sarkar, S.N. et al., 2004, Novel Roles of TLR3 tyrosine phosphorylation and PI3 kinase in dsRNA signaling. Nat. Sturct. Mol. Biol. in press

    Google Scholar 

  31. Roberts, W.K., Hovanessian, A., Brown, R.E., Clemens, M.J. & Kerr, I.M., 1976, Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature. 264:477–480

    Article  PubMed  CAS  Google Scholar 

  32. Hovanessian, A.G., Brown, R.E. & Kerr, I.M., 1977, Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature. 268:537–540

    Article  PubMed  CAS  Google Scholar 

  33. Rebouillat, D. & Hovanessian, A.G., 1999, The human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Cytokine Res. 19:295–308

    Article  PubMed  CAS  Google Scholar 

  34. Justesen, J., Hartmann, R. & Kjeldgaard, N.O., 2000, Gene structure and function of the 2′-5′-oligoadenylate synthetase family. Cell. Mol. Life Sci. 57:1593–1612

    Article  PubMed  CAS  Google Scholar 

  35. Sarkar, S.N., Bandyopadhyay, S., Ghosh, A. & Sen, G.C., 1999, Enzymatic characteristics of recombinant medium isozyme of 2′-5′ oligoadenylate synthetase. J. Biol. Chem. 274:1848–1855

    Article  PubMed  CAS  Google Scholar 

  36. Rebouillat, D., Hovnanian, A., Marie, I. & Hovanessian, A.G., 1999, The 100-kDa 2′,5′-oligoadenylate synthetase catalyzing preferentially the synthesis of dimeric pppA2′p5′A molecules is composed of three homologous domains [In Process Citation]. J. Biol. Chem. 274:1557–1565

    Article  PubMed  CAS  Google Scholar 

  37. Sarkar, S.N., Ghosh, A., Wang, H.W., Sung, S.S. & Sen, G.C., 1999, The nature of the catalytic domain of 2′-5′-oligoadenylate synthetases. J. Biol. Chem. 274:25535–25542

    Article  PubMed  CAS  Google Scholar 

  38. Sarkar, S.N., Miyagi, M., Crabb, J.W. & Sen, G.C., 2002, Identification of the substrate-binding sites of 2′-5′-oligoadenylate synthetase. J. Biol. Chem. 277:24321–24330

    Article  PubMed  CAS  Google Scholar 

  39. Ghosh, A., Sarkar, S.N., Guo, W., Bandyopadhyay, S. & Sen, G.C., 1997, Enzymatic activity of 2′-5′-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein. J. Biol. Chem. 272:33220–33226

    Article  PubMed  CAS  Google Scholar 

  40. Sarkar, S.N., Pal, S. & Sen, G.C., 2002, Crisscross enzymatic reaction between the two molecules in the active dimeric P69 form of the 2′-5′ oligodenylate synthetase. J. Biol. Chem. 277:44760–44764

    Article  PubMed  CAS  Google Scholar 

  41. Hartmann, R., Justesen, J., Sarkar, S.N., Sen, G.C. & Yee, V.C., 2003, Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase. Mol. Cell. 12:1173–1185

    Article  PubMed  CAS  Google Scholar 

  42. Andersen, J.B., Strandbygard, D.J., Hartmann, R. & Justesen, J., 2004, Interaction between the 2′-5′ oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. Eur. J. Biochem. 271:628–636

    Article  PubMed  CAS  Google Scholar 

  43. Chebath, J., Benech, P., Revel, M. & Vigneron, M., 1987, Constitutive expression of (2′-5′) oligo A synthetase confers resistance to picornavirus infection. Nature. 330:587–588

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh, A., Sarkar, S.N. & Sen, G.C., 2000, Cell growth regulatory and antiviral effects of the P69 isozyme of 2–5 (A) synthetase. Virology. 266:319–328

    Article  PubMed  CAS  Google Scholar 

  45. Maitra, R.K. et al., 1994, HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology. 204:823–827

    Article  PubMed  CAS  Google Scholar 

  46. Sharp, T.V. et al., 1999, Activation of the interferon-inducible (2′-5′) oligoadenylate synthetase by the Epstein-Barr virus RNA, EBER-1. Virology. 257:303–313

    Article  PubMed  CAS  Google Scholar 

  47. Desai, S.Y. et al., 1995, Activation of interferon-inducible 2′-5′ oligoadenylate synthetase by adenoviral VAI RNA. J. Biol. Chem. 270:3454–3461

    Article  PubMed  CAS  Google Scholar 

  48. Perelygin, A.A. et al., 2002, Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA 99:9322–9327

    Article  PubMed  CAS  Google Scholar 

  49. Mashimo, T. et al., 2002, A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. USA 99:11311–11316

    Article  PubMed  CAS  Google Scholar 

  50. Ghosh, A., Sarkar, S.N., Rowe, T.M. & Sen, G.C., 2001, A specific isozyme of 2′-5′ oligoadenylate synthetase is a dual function proapoptotic protein of the bcl-2 family. J. Biol. Chem. 276:25447–25455

    Article  PubMed  CAS  Google Scholar 

  51. Hartmann, R., Rebouillat, D., Justesen, J., Sen, G.C. & Williams, B.R., 2001, The P59 Oligoadenylate Synthetase like Protein (P59OASL) does not display oligoadenylate synthetase activity but posses antiviral properties conferred by an ubiquitin-like domain. J. Interferon Cytokine Res. 21:S–69

    Google Scholar 

  52. Han, J.Q. & Barton, D.J., 2002, Activation and evasion of the antiviral 2’-5’ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA. 8:512–525

    Article  PubMed  CAS  Google Scholar 

  53. Taguchi, T. et al., 2004, Hepatitis C virus NS5A protein interacts with 2’,5’-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol. 85:959–969

    Article  PubMed  CAS  Google Scholar 

  54. Silverman, R.H., 2003, Implications for RNase L in m prostate cancer biology. Biochemistry. 42:1805–1812

    Article  PubMed  CAS  Google Scholar 

  55. Player, M.R. & Torrence, P.F., 1998, The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol. Ther. 78:55–113

    Article  PubMed  CAS  Google Scholar 

  56. Dong, B., Niwa, M., Walter, P. & Silverman, R.H., 2001, Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA. 7:361–373

    Article  PubMed  CAS  Google Scholar 

  57. Dong, B. & Silverman, R.H., 1997, A bipartite model of 2-5A-dependent RNase L. J. Biol. Chem. 272:22236–22242

    Article  PubMed  CAS  Google Scholar 

  58. Dong, B. & Silverman, R.H., 1995, 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J. Biol. Chem. 270:4133–4137

    Article  PubMed  CAS  Google Scholar 

  59. Suhadolnik, R.J. et al., 1997, Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome. J. Interferon Cytokine Res. 17:377–385

    PubMed  CAS  Google Scholar 

  60. Demettre, E. et al., 2002, Ribonuclease L proteolysis in peripheral blood mononuclear cells of chronic fatigue syndrome patients. J. Biol. Chem. 277:35746–35751

    Article  PubMed  CAS  Google Scholar 

  61. Le Roy, F. et al., 2001, The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. J. Biol. Chem. 276:48473–48482

    Article  PubMed  Google Scholar 

  62. Zhou, A. et al., 1997, Interferon action and apoptosis are defective in mice devoid of 2’,5’-oligoadenylate-dependent RNase L. EMBO J. 16:6355–6363

    Article  PubMed  CAS  Google Scholar 

  63. Li, G., Xiang, Y., Sabapathy, K. & Silverman, R.H., 2004, An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J. Biol. Chem. 279:1123–1131

    Article  PubMed  CAS  Google Scholar 

  64. Carpten, J. et al., 2002, Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat. Genet. 30:181–184

    Article  PubMed  CAS  Google Scholar 

  65. Wang, L. et al., 2002, Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am. J. Hum. Genet. 71:116–123

    Article  PubMed  CAS  Google Scholar 

  66. Casey, G. et al., 2002, RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat. Genet. 32:581–583

    Article  PubMed  CAS  Google Scholar 

  67. Ito, T., Yang, M. & May, W.S., 1999, RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J. Biol. Chem. 274:15427–15432

    Article  PubMed  CAS  Google Scholar 

  68. Patel, C.V., Handy, I., Goldsmith, T. & Patel, R.C., 2000, PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J. Biol. Chem. 275:37993–37998

    Article  PubMed  CAS  Google Scholar 

  69. Peters, G.A., Hartmann, R., Qin, J. & Sen, G.C., 2001, Modular structure of PACT: distinct domains for binding and activating PKR. Mol. Cell. Biol. 21:1908–1920

    Article  PubMed  CAS  Google Scholar 

  70. Clemens, M.J. & Elia, A., 1997, The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res. 17:503–524

    Article  PubMed  CAS  Google Scholar 

  71. Nanduri, S., Rahman, F., Williams, B.R. & Qin, J., 2000, A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. EMBO J. 19:5567–5574

    Article  PubMed  CAS  Google Scholar 

  72. Patel, R.C. & Sen, G.C., 1998, PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17:4379–4390

    Article  PubMed  CAS  Google Scholar 

  73. Patel, R.C. et al., 1999, DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J. Biol. Chem. 274:20432–20437

    Article  PubMed  CAS  Google Scholar 

  74. Shim, J., Lim, H., J, R.Y. & Karin, M., 2002, Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell. 10:1331–1344

    Article  PubMed  CAS  Google Scholar 

  75. Xu, Z. & Williams, B.R., 2000, The B56alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Mol. Cell. Biol. 20:5285–5299

    Article  PubMed  CAS  Google Scholar 

  76. Tan, S.L., Tareen, S.U., Melville, M.W., Blakely, C.M. & Katze, M.G., 2002, The direct binding of the catalytic subunit of protein phosphatase 1 to the PKR protein kinase is necessary but not sufficient for inactivation and disruption of enzyme dimer formation. J. Biol. Chem. 277:36109–36117

    Article  PubMed  CAS  Google Scholar 

  77. Gale, M., Jr. & Katze, M.G., 1998, Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol. Ther. 78:29–46

    Article  PubMed  CAS  Google Scholar 

  78. Katze, M.G., He, Y. & Gale, M., Jr., 2002, Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2:675–687

    Article  PubMed  CAS  Google Scholar 

  79. Gale, M., Jr. et al., 1998, Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell. Biol. 18:5208–5218

    PubMed  CAS  Google Scholar 

  80. Taylor, D.R., Shi, S.T., Romano, P.R., Barber, G.N. & Lai, M.M., 1999, Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 285:107–110

    Article  PubMed  CAS  Google Scholar 

  81. Burysek, L. & Pitha, P.M., 2001, Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J. Virol. 75:2345–2352

    Article  PubMed  CAS  Google Scholar 

  82. Poppers, J., Mulvey, M., Khoo, D. & Mohr, I., 2000, Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J. Virol. 74:11215–11221

    Article  PubMed  CAS  Google Scholar 

  83. Peters, G.A., Khoo, D., Mohr, I. & Sen, G.C., 2002, Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J. Virol. 76:11054–11064

    Article  PubMed  CAS  Google Scholar 

  84. He, B., Gross, M. & Roizman, B., 1997, The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 94:843–848

    Article  PubMed  CAS  Google Scholar 

  85. Zinn, K., Keller, A., Whittemore, L.A. & Maniatis, T., 1988, 2-Aminopurine selectively inhibits the induction of beta-interferon, c-fos, and c-myc gene expression. Science. 240:210–213

    PubMed  CAS  Google Scholar 

  86. Tiwari, R.K., Kusari, J., Kumar, R. & Sen, G.C., 1988, Gene induction by interferons and double-stranded RNA: selective inhibition by 2-aminopurine. Mol. Cell. Biol. 8:4289–4294

    PubMed  CAS  Google Scholar 

  87. Kumar, A., Haque, J., Lacoste, J., Hiscott, J. & Williams, B.R., 1994, Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. USA 91:6288–6292

    Article  PubMed  CAS  Google Scholar 

  88. Maran, A. et al., 1994, Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras. Science. 265:789–792

    PubMed  CAS  Google Scholar 

  89. Yang, Y.L. et al., 1995, Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:6095–6106

    PubMed  CAS  Google Scholar 

  90. Kumar, A. et al., 1997, Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 16:406–416

    Article  PubMed  CAS  Google Scholar 

  91. Diebold, S.S. et al., 2003, Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature. 424:324–328

    Article  PubMed  CAS  Google Scholar 

  92. Grandvaux, N. et al., 2002, Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76:5532–5539

    Article  PubMed  CAS  Google Scholar 

  93. Guo, J., Peters, K.L. & Sen, G.C., 2000, Induction of the human protein P56 by interferon, double-stranded RNA, or virus infection. Virology. 267:209–219

    Article  PubMed  CAS  Google Scholar 

  94. Lamb, J.R., Tugendreich, S. & Hieter, P., 1995, Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20:257–259

    Article  PubMed  CAS  Google Scholar 

  95. Blatch, G.L. & Lassle, M., 1999, The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 21:932–939

    Article  PubMed  CAS  Google Scholar 

  96. D’Andrea, L.D. & Regan, L., 2003, TPR proteins: the versatile helix. Trends Biochem. Sci. 28:655–662

    Article  PubMed  CAS  Google Scholar 

  97. Marchetti, A. et al., 1995, Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J. Virol. 69:1932–1938

    PubMed  CAS  Google Scholar 

  98. Asano, K., Merrick, W.C. & Hershey, J.W., 1997, The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J. Biol. Chem. 272:23477–23480

    Article  PubMed  CAS  Google Scholar 

  99. Guo, J., Hui, D.J., Merrick, W.C. & Sen, G.C., 2000, A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J. 19:6891–6899

    Article  PubMed  CAS  Google Scholar 

  100. Gale, M., Jr. et al., 2002, Translational control of Hepatitis C Virus (HCV) RNA replication through PKR and P56. J. Interferon Cytokine Res. 22:S–63

    Google Scholar 

  101. Hershey, J.W. & Merrick, W.C., 2000 Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression (Sonenberg, N., Hershey, J.W. & Mathews, M.B. eds.) Cold Spring Harbor Laboratory Press., New York, pp185–243

    Google Scholar 

  102. Hui, D.J., Bhasker, C.R., Merrick, W.C. & Sen, G.C., 2003, Viral stress inducible protein P56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF22GTP2Met-tRNAi. J. Biol. Chem. 278:39477–39482

    Article  PubMed  CAS  Google Scholar 

  103. Hofmann, K. & Bucher, P., 1998, The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23:204–205

    Article  PubMed  CAS  Google Scholar 

  104. Heil, F. et al., 2004, Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 303:1526–1529

    Article  PubMed  CAS  Google Scholar 

  105. Chin, K.-C. & Cresswell, P., 2001, Inaugural Article: Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. PNAS. 98:15125–15130

    Article  PubMed  CAS  Google Scholar 

  106. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A., 2003, Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513–520

    Article  PubMed  CAS  Google Scholar 

  107. Akira, S. & Hemmi, H., 2003, Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85:85–95

    Article  PubMed  CAS  Google Scholar 

  108. Chebath, J., Merlin, G., Metz, R., Benech, P. & Revel, M., 1983, Interferon-induced 56,000 Mr protein and its mRNA in human cells: molecular cloning and partial sequence of the cDNA. Nucleic Acids Res. 11:1213–1226

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sarkar, S.N., Peters, G.A., Sen, G.C. (2005). Genes Modulated by Interferons and Double-Stranded RNA. In: Palese, P. (eds) Modulation of Host Gene Expression and Innate Immunity by Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3242-0_3

Download citation

Publish with us

Policies and ethics