Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 179))

Abstract

Some progress has been made in the field of molecular systematics of polychaetes over the past couple of years. In particular, phylogenetic analyses of sequence data from the 18S rRNA gene have included increasing numbers of taxa, and explicit hypothesis testing of sister-group relationships is being incorporated into the most recent studies. An increasing number of analyses of relationships within polychaete groups are being undertaken, with specific inferences being drawn regarding the evolution of characters such as reproductive mode. Despite this progress, the unanswered questions regarding annelid relationships outlined by McHugh (2000, p. 1881) remain: “what are the relationships among the polychaete annelids, what group is sister to the Clitellata, what extant group is most basal on the annelid tree, and what group is sister to Annelida?” Continued expansion of taxon sampling and further combined investigation of conserved nuclear coding genes, in conjunction with rRNA genes, may help to resolve some of these issues. Furthermore, only by expanding molecular systematic studies of polychaetes to analyses of nuclear coding genes for comprehensive taxon samples will it become clear whether the lack of basal-node resolution observed in analyses of 18S rRNA reflects a rapid radiation of the group, or is a feature associated with the 18S rRNA gene itself. Genomic-level data (e.g., mitochondrial gene order) may also be informative, and the cautious use of gene copies in phylogenetic analyses may point to a root of the annelid tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bleidorn, C., L. Vogt & T. Bartolomaeus, 2003. A contribution to sedentary polychaete phylogeny using 18S rRNA sequence data. Journal of Zoological Systematics and Evolutionary Research 41: 186–195.

    Article  Google Scholar 

  • Boore, J. L. & W. M. Brown, 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate the Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Molecular Biology and Evolution 17: 87–106.

    PubMed  CAS  Google Scholar 

  • Boore, J. L. & J. L. Staton, 2002. The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Molecular Biology and Evolution 19: 127–137.

    PubMed  CAS  Google Scholar 

  • Brown, S., G. Rouse, P. Hutchings & D. Colgan, 1999. Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships. Australian Journal of Zoology 47: 499–516.

    Google Scholar 

  • Carlini, D. B., K. S. Reece & J. E. Graves, 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution 17: 1353–1379.

    PubMed  CAS  Google Scholar 

  • Colgan, D. J., P. A. Hutchings & S. Brown. 2001. Phylogenetic relationships within the Terebellomorpha. Journal of the Marine Biological Association of the United Kingdom 81:765–773.

    Article  CAS  Google Scholar 

  • Dahlgren, T. G., B. Akesson, C. Schander, K. M. Halanych & P. Sundberg, 2001. Molecular phylogeny of the model annelid Ophryotrocha. The Biological Bulletin 201: 193–203.

    PubMed  CAS  Google Scholar 

  • Dahlgren, T. G., J. Lundberg, F. Pleijel & P. Sundberg, 2000. Morphological and molecular evidence of the phylogeny of Nereidiform polychaetes (Annelida). Journal of Zoological Systematics and Evolutionary Research 38: 249–253.

    Article  Google Scholar 

  • De Rijk, P. & R. De Wachter, 1993. DCSE, an interactive tool for sequence alignment and secondary structure research. Computational Applications in Bioscience 9: 735–740.

    Google Scholar 

  • Desbruyères, D. & L. Laubier, 1980. Alvinella pompejana g. et sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique. Oceanologica Acta 3: 267–274.

    Google Scholar 

  • Doolittle, W. R. & J. R. Brown, 1995. Root of the universal tree of life based on ancient aminoacyl-transfer-RNA synthetase gene duplications. Proceedings of the National Academy of Sciences of the United States of America 92: 2441–2445.

    PubMed  Google Scholar 

  • Eernisse, D. J., 1997. Arthropod and annelid relationships reexamined. In Fortey, R. A. & R. H. Thomas (eds), Arthropod Relationships, Systematics. Association Special Volume Series 55. Chapman and Hall, London: 43–56.

    Google Scholar 

  • Fauchald, K., 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum Los Angeles County, Science Series 28: 1–188.

    Google Scholar 

  • Friedlander, T. P., J. C. Regier & C. Mitter, 1994. Phylogenetic information content of five nuclear gene sequences in animals: initial assessment of character sets from concordance and divergence studies. Systematic Biology 43: 511–525.

    Google Scholar 

  • Hessling, R., 2002. Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121:221–234.

    Article  Google Scholar 

  • Hessling, R. & W. Westheide, 2002. Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. Journal of Morphology 252: 100–113.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P., B. Larget, R. E. Miller & F. Ronquist, 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51: 673–688.

    PubMed  Google Scholar 

  • Kim, C. B., S.-Y. Moon, S. Gelder & W. Kim, 1996. Phylogenetic relationships of annelids, molluscs, and arthropods evidenced from molecules and morphology. Journal of Molecular Evolution 43: 207–215.

    PubMed  CAS  Google Scholar 

  • Leaché, A. D. & T. W. Reeder, 2002. Molecular systematics of the Eastern Fence lizard (Sceloporus undulates): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology 51: 44–68.

    PubMed  Google Scholar 

  • Lissemore, J. L. & W. T. Starmer, 1999. Phylogenetic analysis of vertebrate and invertebrate Delta/Serrate/LAG-2 (DSL) proteins. Molecular Phylogenetics and Evolution 11:308–319.

    Article  PubMed  CAS  Google Scholar 

  • Mallatt, J. & C. J. Winchell, 2002. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19: 289–301.

    PubMed  CAS  Google Scholar 

  • Martin, P., 2001. On the origin of the Hirudinea and the demise of the Oligochaeta. Proceedings of the Royal Society of London B 268: 1089–1098.

    Article  CAS  Google Scholar 

  • Mathews, S. & M. J. Donoghue, 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of the Sciences of the United States of America 94: 8006–8009.

    CAS  Google Scholar 

  • McHugh, D., 2000. Molecular phylogeny of the Annelida. Canadian Journal of Zoology 78: 1873–1884.

    Article  CAS  Google Scholar 

  • McHugh, D., 2001. Molecular phylogenetic analyses indicate a rapid radiation of polychaete annelids. American Zoologist 41: 1520–1521.

    Google Scholar 

  • Miyata, T. & H. Suga, 2001. Divergence pattern of animal gene families and relationship with the Cambrian explosion. Bio-Essays 23: 1018–1027.

    CAS  Google Scholar 

  • Moon, S. Y., C. B. Kim, S. R. Gelder & W. Kim, 1996. Phylogenetic positions of the aberrant branchiobdellidans and aphanoneurans within the Annelida as derived from 18S ribosomal RNA gene sequences. Hydrobiologia 324: 229–236

    CAS  Google Scholar 

  • Nygren, A. & P. Sundberg, 2003. Phylogeny and evolution of reproductive modes in Autolytinae (Syllidae, Annelida). Molecular Phylogenetics and Evolution 29: 235–249.

    Article  PubMed  CAS  Google Scholar 

  • Nylander, J. A. A., C. Erseus & M. Kallersjo, 1999. A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny. Zoologica Scripta 28: 305–313.

    Article  Google Scholar 

  • Orensanz, J. M., 1990. The eunicemorph polychaete annelids from Antarctic and Subantarctic Seas. Antarctic Research Series 52: 1–183.

    Google Scholar 

  • Page, R. D. M. & E. C. Holmes, 1998. Molecular Evolution. A Phylogenetic Approach. Blackwell Science, Oxford, 346 pp.

    Google Scholar 

  • Purschke, G., 2002. On the ground pattern of Annelida. Organisms, Diversity and Evolution 2: 181–196.

    Article  Google Scholar 

  • Purschke, G., R. Hessling & W. Westheide, 2000. The phylogenetic position of the Clitellata and the Echiura — on the problematic assessment of absent characters. Journal of Zoological Systematics and Evolutionary Research 38:165–173.

    Article  Google Scholar 

  • Rota, E., P. Martin & C. Erséus, 2001. Soil-dwelling polychaetes: enigmatic as ever? Some hints on the phylogenetic relationships as suggested by a maximum parsimony analysis of 18S rRNA gene sequences. Contributions to Zoology 70:127–138.

    Google Scholar 

  • Rouse, G. W., 1999. Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biological Journal of the Linnean Society 66: 411–464.

    Article  Google Scholar 

  • Rouse G. W. & K. Fauchald, 1997. Cladistics and polychaetes. Zoologica Scripta 26: 139–204.

    Google Scholar 

  • Rouse, G. W. & F. Pleijel. 2001. Polychaetes. Oxford University Press, New York, 354 pp.

    Google Scholar 

  • Rousset, V., G. W. Rouse, J.-P. Féral, D. Desbruyères & F. Pleijel, 2003. Molecular and morphological evidence of Alvinellidae relationships (Terebelliformia, Polychaeta, Annelida). Zoologica Scripta 32: 185–197.

    Article  Google Scholar 

  • Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Baguña & M. Riutort, 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the United States of America 99: 11246–11251.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, S. R., S. A. Rice, J. L. Simon & S. A. Karl, 2000. Evolution of poecilogony and the biogeography of North American populations of the polychaete Streblospio. Evolution 54: 1247–1259.

    PubMed  CAS  Google Scholar 

  • Siddall, M. E., K. Apakupakul, E. M. Burreson, K. A. Coates, C. Erséus, S. R. Gelder, M. Källersjo & H. Trapido-Rosenthal, 2001. Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monophyletic group of oligochaetes. Molecular Phylogenetics and Evolution 21: 346–351.

    Article  PubMed  CAS  Google Scholar 

  • Struck, T. H., R. Hessling & G. Purschke, 2002a. The phylogenetic position of the Aeolosomatidae and Parergodrilidae, two enigmatic oligochaete-like taxa of the “Polychaeta”, based on molecular data from 18S rDNA sequences. Journal of Zoological Systematics and Evolutionary Research 40:155–163.

    Article  Google Scholar 

  • Struck, T. H., W. Westheide & G. Purschke, 2002b. Progenesis in Eunicida (“Polychaeta,” Annelida) — separate evolutionary events? Evidence from molecular data. Molecular Phylogenetics and Evolution 25: 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y., G. V. Glazko & M. Nei, 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99: 16138–16143.

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    PubMed  CAS  Google Scholar 

  • Westheide, W., D. McHugh, G. Purschke & G. Rouse, 1999. Systematization of the Annelida: different approaches. Hydrobiologia 402: 291–307.

    Article  Google Scholar 

  • Winnepenninckx, B., T. Backeljau & R. De Wachter, 1995. Phylogeny of protostome worms derived from 18S rRNA sequences. Molecular Biology and Evolution 12: 641–649.

    PubMed  CAS  Google Scholar 

  • Winnepenninckx, B. M. H., Y. Van de Peer & T. Backeljau, 1998. Metazoan relationships on the basis of 18S rRNA sequences: A few years later… American Zoologist 38:888–906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

McHugh, D. (2005). Molecular systematics of polychaetes (Annelida). In: Bartolomaeus, T., Purschke, G. (eds) Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Developments in Hydrobiology, vol 179. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3240-4_17

Download citation

Publish with us

Policies and ethics