Skip to main content

Reconstructing the phylogeny of the Sipuncula

  • Chapter
  • 1432 Accesses

Part of the Developments in Hydrobiology book series (DIHY,volume 179)

Abstract

Sipunculans are marine spiralian worms with possible close affinities to the Mollusca or Annelida. Currently 147 species, 17 genera, 6 families, 4 orders and 2 classes are recognized. In this paper we review sipunculan morphology, anatomy, paleontological data and historical affiliations. We have conducted cladistic analyses for two data sets to elucidate the phylogenetic relationships among sipunculan species. We first analyzed the relationships among the 45 species of Phascolosomatidea with representatives of the Sipunculidea as outgroups, using 35 morphological characters. The resulting consensus tree has low resolution and branch support is low for most branches. The second analysis was based on DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and one nuclear protein-coding gene, histone H3. Outgroups were chosen among representative spiralians. In a third analysis, the molecular data were combined with the morphological data. Data were analyzed using parsimony as the optimality criterion and branch support evaluated with jackknifing and Bremer support values. Branch support for outgroup relationships is low but the monophyly of the Sipuncula is well supported. Within Sipuncula, the monophyly of the two major groups, Phascolosomatidea and Sipunculidea is not confirmed. Of the currently recognized families, only Themistidae appears monophyletic. The Aspidosiphonidae, Phascolosomatidae and Golfingiidae would be monophyletic with some adjustments in their definition. The Sipunculidae is clearly polyphyletic, with Sipunculus nudus as the sister group to the remaining Sipuncula, Siphonosoma cumanense the sister group to a clade containing Siphonosoma vastum and the Phascolosomatidea, and Phascolopsis gouldi grouping within the Golfingiiformes, as suggested previously by some authors. Of the genera with multiple representatives, only Phascolosoma and Themiste are monophyletic as currently defined.We are aiming to expand our current dataset with more species in our molecular database and more detailed morphological studies.

Key words

  • Sipuncula
  • phylogeny
  • 18S rRNA
  • 28S rRNA
  • histone H3
  • Spiralia
  • cladistic analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-3240-4_15
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3240-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åkesson, B., 1958. A study of the nervous system of the Sipunculoideae, with some remarks on the development of the two species Phascolion strombi Montagu and Golfingia minuta Keferstein. Undersokningar over Oresund 38: 1–249.

    Google Scholar 

  • Backeljau, T., B. Winnepenninckx & L. De Bruyn, 1993. Cladistic analysis of metazoan relationships: a reappraisal. Cladistics 9: 167–181.

    CrossRef  Google Scholar 

  • Banta, W. C. & M. E. Rice, 1976. A restudy of the Middle Cambrian Burgess Shale fossil worm, Ottoia prolifica. In Rice, M. E. & M. Todorovic (eds), Proceedings of the International Symposioum on the Biology of the Sipuncula and Echiura. Naucçno Delo Press, Belgrade: 79–90.

    Google Scholar 

  • Boore, J. L. & J. L. Staton, 2002. The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Molecular Biology and Evolution 19: 127–137.

    PubMed  CAS  Google Scholar 

  • Brett, C. E. & J. F. Cottrell, 1982. Substrate specificity in the Devonian tabulate coral Pleurodictyum. Lethaia 15: 247–262.

    Google Scholar 

  • Brett, C. E., W. D. Liddell & K. L. Derstler, 1983. Late Cambrian hard substrate communities from Montana/Wyoming: the oldest known hardground encrusters. Lethaia 16: 281–289.

    Google Scholar 

  • Brusca, R. C. & G. J. Brusca, 1990. Invertebrates. Sinauer Associates, Sunderland.

    Google Scholar 

  • Brusca, R. C. & G. J. Brusca, 2003. Invertebrates. Second edition Sinauer Associates, Sunderland.

    Google Scholar 

  • Conway Morris, S., 1989. Burgess Shale faunas and the Cambrian explosion. Science 246: 339–346.

    PubMed  Google Scholar 

  • Conway Morris, S., 1998. The Crucible of Creation. The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, 242 pp.

    Google Scholar 

  • Cutler, E. B., 1994. The Sipuncula. Their Systematics, Biology and Evolution. Cornell University Press, Ithaca, NY, 453 pp.

    Google Scholar 

  • Cutler, E. B. & P. E. Gibbs, 1985. A phylogenetic analysis of higher taxa in the phylum Sipuncula. Systematic Zoology 34:162–173.

    Google Scholar 

  • Cuvier, B., 1830. Le règne animal distribué d’après son oranisation, pour servir de base a l’histoire naturelle des animaux et d’introduction à l’anatomie comparèe, Ser. 2, Vol. 3. Deterville, Paris: 1–244.

    Google Scholar 

  • Dybas, L., 1981. Sipunculans and echiuroids. In Ratcliff, N. A. & A. F. Rowley (eds), Invertebrate Blood Cells. Academic Press, New York: 161–188.

    Google Scholar 

  • Edmonds, S. J., 2000. Phylum Sipuncula. In Beesley, P. L., G. J. B. Ross & C. J. Glasby (eds), Fauna of Australia 4, Polychaetes & Allies: The Southern Synthesis. CSIRO Publishing, Melbourne: 375–400.

    Google Scholar 

  • Eernisse D. J., J. S. Albert & F. E. Anderson, 1992. Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology 41:305–330.

    Google Scholar 

  • Erber, A., D. Riemer, M. Bovenschulte & K. Weber, 1998. Molecular phylogeny of metazoan intermediate filament proteins. Journal of Molecular Evolution 47: 751–762.

    PubMed  CAS  Google Scholar 

  • Eriksson, T., 1998. AutoDecay. Stockholm, Distributed by the Author. Department of Botany, Stockholm University.

    Google Scholar 

  • Ferrier, D. E. & P. W. Holland, 2001. Sipunculan ParaHox genes. Evolution & Development 3: 263–270.

    CAS  Google Scholar 

  • Florkin, M., 1975. Biochemical evidence for the phylogenetic relationships of the Sipuncula. In Rice, M. E. & M. Todorovic (eds), Proceedings of the International Symposium on the biology of the Sipuncula and Echiura. Naucno Delo Press, Belgrade: 95–110.

    Google Scholar 

  • Frey, R. W., G. Pemberton & J. A. Fagerstrom, 1984. Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology 58: 511–528.

    Google Scholar 

  • Gibbs, P. E. & E. B. Cutler, 1987. A classification of the phylum Sipuncula. Bulletin of the British Museum of Natural History (Zoology) 52: 43–58.

    Google Scholar 

  • Gill, G. A. & A. G. Coates, 1977. Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia 10:119–134.

    Google Scholar 

  • Giribet, G., 2002. Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Molecular Phylogenetics and Evolution 24: 345–357.

    CrossRef  PubMed  CAS  Google Scholar 

  • Giribet, G., D. L. Distel, M. Polz, W. Sterrer & W. C. Wheeler, 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology 49: 539–562.

    PubMed  CAS  Google Scholar 

  • Green, C. R. & P. R. Berquist, 1982. Phylogenetic relationships within the Invertebrata in relation to the structure of septate junctions and the development of occluding junctional types. Journal of Cell Science 53: 279–306.

    Google Scholar 

  • Guralnick, R. 2002. A recapitulation of the rise and fall of the cell lineage research program: the evolutionary developmental relationship of cleavage to homology, body plans and life history. Journal of History of Biology 35: 527–567.

    Google Scholar 

  • Guralnick, R. P. & Lindberg, D. R. 2001. Reconnecting cell and animal lineages: what do cell lineages tell us about the evolution and development of Spiralia? Evolution 55: 1501–1519.

    PubMed  CAS  Google Scholar 

  • Henry, R. P., 1987. Invertebrate red blood cell carbonic anhydrase. Journal of Experimental Zoology 242: 113–116.

    CrossRef  PubMed  CAS  Google Scholar 

  • Holland, P. W. H., 1998. Major transitions in animal evolution: A developmental genetic perspective. American Zoology 38:878–887.

    Google Scholar 

  • Huang, D, J. Chen, J. Vannier & J. I. Saiz Salinas, 2004. Early Cambrian sipunculan worms from southwest China. Proceedings of the Royal Society of London, Series B 271: 1671–1676.

    CrossRef  Google Scholar 

  • Hyman, L. H., 1959. The Invertebrates 5, Smaller Coelomate Groups. McGraw-Hill, New York, 783 pp.

    Google Scholar 

  • Ionescu-Varo, M. & M. Tufescu, 1982. Quantitative remarks on immune evolution in the animal series. Rev. Roumaine Biol. série Biol. Animale 27: 29–39.

    Google Scholar 

  • Keferstein, W., 1863. Beiträge sur Kenntnis der Gattung Phascolosoma F.S. Leuck. Untersuchungen über niedere Seethiere. Zeitschrift für Wissenschaftliche Zoologie 12: 35–51.

    Google Scholar 

  • Keferstein, W., 1865a. Beiträge zur anatomischen und systematischen Kenntnis der Sipunculiden. Nachrichten der Gesellschaft der Wissenschaften, Göttingen 1865:189–209.

    Google Scholar 

  • Keferstein, W., 1865b. Beiträge zur anatomischen und systematischen Kenntniss der Sipunculiden. Zeitschrift für Wissenschaftliche Zoologie 15: 404–445.

    Google Scholar 

  • Keferstein, W., 1866. Untersuchungen uber einige amerikanische Sipunculiden. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-August-Universität zu Göttingen 14: 215–228.

    Google Scholar 

  • Keferstein, W., 1867. Untersuchungen über einige amerikanische Sipunculiden. Zeitschrift Fur Wissenschaftliche Zoologie 17: 44–55.

    Google Scholar 

  • Klepal, W., 1987. The anchoring fiber apparatus in the sperm of Aspidosiphon sp. (Sipunculida). European Journal of Cell Biology Suppl. 0: 18.

    Google Scholar 

  • Kotetskii, E. Y., 1984. The phospholipid composition of Spongia, Coelenterata and free living Platyhelminthes, Nemertini, Annelida, Sipunculida and Echiurida. Biologiya Morya 0: 46–53.

    Google Scholar 

  • Lake, J. A., 1990. Origin of the Metazoa. Proceedings of the National Academy of Sciences of the United State of America 87: 763–766.

    CAS  CrossRef  Google Scholar 

  • Lamarck, J. P. B. A. de M., 1816. Histoire naturelle des animaux sans vertébrés. Vol. 3. Verdière: Paris, 683 pp.

    Google Scholar 

  • Lehman, W. & A. G. Szent-Gyoörgyi, 1975. Regulation of muscular contraction: distribution of actin control and myosin control in the animal kingdom. Journal of General Physiology 66: 1–30.

    CrossRef  PubMed  CAS  Google Scholar 

  • Livingstone, D. R., A. Dezwaan, M. Leopold & E. Marteijn, 1983. Studies on the phylogenetic distribution of pyruvate oxidoreductases. Biochem. Syst. Ecol. 1: 415–425.

    Google Scholar 

  • Maddison, D. R. & W. P. Maddison, 2001. MacClade. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Mangum, C. P., 1990. The role of physiology and biochemistry in understanding animal phylogeny. Proceedings of the Biological Society of Washington 103: 235–247.

    Google Scholar 

  • Marti Mus, M. & J. Bergstrom, 2001. The skeleton-muscular system of hyolithids. American Zoologist 41: 1514.

    Google Scholar 

  • Maxmen, A. B., B. F. King, E. B. Cutler & G. Giribet, 2003. Evolutionary relationships within the protostome phylum Sipuncula: a molecular analysis of ribosomal genes and histone H3 sequence data. Molecular Phylogenetics and Evolution 27: 489–503.

    CrossRef  PubMed  CAS  Google Scholar 

  • McBride, E. F. & M. D. Picard, 1991. Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea formation (Miocene), northern Apennine, Italy. Palaios 6: 281–290.

    Google Scholar 

  • Meglitsch, P. A. & F. R. Schram, 1991. Invertebrate Zoology. Oxford University Press, Oxford.

    Google Scholar 

  • Nichols, D. 1967. The origin of echinoderms. Symposia of the Zoological Society of London 20: 209–229.

    Google Scholar 

  • Nielsen, C., 1987. Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica 68.

    Google Scholar 

  • Nielsen, C., N. Scharff & D. Eibye-Jacobsen, 1996. Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society 57, 385–410.

    CrossRef  Google Scholar 

  • Ocharan, F. J., 1974. Sobre los nefridios de Phascolosoma granulatum (Sipuncula). Separata de la revista de la “Facultad de Ciencias” 15: 21–40.

    Google Scholar 

  • Pemberton, S. G., D. R. Kobluk, R. K. Yeo & M. J. Risk, 1980. Boring Trypanites at the Silurian-Devonian disconformity in southern Ontario, Canada. Journal of Paleontology 54:1258–1266.

    Google Scholar 

  • Peterson, K. & D. J. Eernisse, 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3:170–205.

    CAS  CrossRef  Google Scholar 

  • Pickford, G. E., 1947. Sipunculida. In Encyclopedia Britannica, Vol. 20. University of Chicago, Chicago: 717–718b.

    Google Scholar 

  • Pilger, J. F. & M. E. Rice, 1987. Ultrastructural evidence for the contractile vessel of sipunculans as a possible ultrafiltration site. American Zoology. 27: 810a.

    Google Scholar 

  • Pisera, A., 1987. Boring and nestling organisms from Upper Jurassic coral colonies from Northern Poland. Acta Palaeontologia Polonica 32: 83–104.

    Google Scholar 

  • Purschke, G., F. Wolfrath & W. Westheide, 1997. Ultrastructure of the nuchal organ and cerebral organ in Onchnesoma squamatum (Sipuncula, Phascolionidae). Zoomorphology 117: 23–31.

    CrossRef  Google Scholar 

  • Qautrefages, A. de, 1847. Mémoires sur l’échine de Gaertner. Annales des Sciences Naturelles, Zoologie, Série 3: 307.

    Google Scholar 

  • Rice, M. E., 1985. Sipuncula: developmental evidence for phylogenetic inference. In Morris, S. C., J. D. George, R. Gibson & H. M. Platt (eds), The Origins and Relationships of Lower Invertebrates. Oxford University Press, Oxford: 274–296.

    Google Scholar 

  • Rice, M. E., 1993. Sipuncula. In Harrison, F. W. & M. E. Rice (eds), Microscopic Anatomy of Invertebrates: Onychophora, Chilopoda, and lesser Protostomata. Wiley-Liss, New York: 237–325.

    Google Scholar 

  • Romero-Wetzel, M. B., 1987. Sipunculans as inhabitants of very deep narrow burrows in deep-sea sediments. Marine Biology 96: 87–92.

    CrossRef  Google Scholar 

  • Runnegar, B., B. Pojeta, N. J. Morris, J. D. Taylor, M. E. Taylor & G. McClung, 1975. Biology of the Hyolitha. Lethaia 8: 181–192.

    Google Scholar 

  • Ruppert, E. E. & M. E. Rice, 1995. A functional organization of dermal coelomic canals in Sipunculus nudus (Sipuncula) with a discussion of respiratory designs in sipunculans. Invertebrate Zoology 114: 51–63.

    Google Scholar 

  • Scheltema, A. H., 1993. Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biological Bulletin 184: 57–78.

    Google Scholar 

  • Sedgwick, A., 1898. A student’s textbook of zoology. S. Sonnenschein, London; Macmillan, New York, 783 pp.

    Google Scholar 

  • Selenka, E., 1875. Eifurchung und Larvenbildung von Phascolosoma elongatum. Zeitschrift für Wissenschaftliche Zoologie 25: 442–450.

    Google Scholar 

  • Selenka, E., 1885. Report on the Gephyrea collected by H. M. S. Challenger during 1873–76. Report of scientific results of the Voyage of Challenger Zoology 13: 1–25.

    Google Scholar 

  • Selenka, E., 1888. On the Gephyrea of the Mergui Archipelago collected for the Trustees of the Indian Museum. J. Linn. Soc. London, Zool. 21: 220–222.

    Google Scholar 

  • Selenka, E., 1897. Die Sipunculiden-Gattung Phymosoma. Zoologischer Anzeiger 20: 460.

    Google Scholar 

  • Selenka, E., J. G. de Man & C. Bülow, 1883. Die Sipunculiden, eine systematische Monographie. Semper Reisen im Archipel der Phillippinen II 4: 1–131.

    Google Scholar 

  • Smith, S. W., R. Overbeek, C. R. Woese, W. Gilbert & P. M. Gillevet, 1994. The Genetic Data Environment: an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences 10: 671–675.

    PubMed  CAS  Google Scholar 

  • Søensen, M. V., P. Funch, E. Willerslev, A. J. Hansen & J. Olesen, 2000. On the phylogeny of Metazoa in the light of Cycliophora and Micrognathozoa. Zoologischer Anzeiger 239: 297–318.

    Google Scholar 

  • Stephen, A. C., 1964. A revision of the classification of the phylum Sipuncula. Annals and Magazine of Natural History 7: 457–462.

    Google Scholar 

  • Stephen, A. C. & S. J. Edmonds, 1972. The phyla Sipuncula and Echiura. Trustees British Mus. (Nat. Hist.), London, 528 pp.

    Google Scholar 

  • Swofford, D. L., 2000. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Voss-Foucart, M. F., S. Barzin, C. Jeuniaux & J. C. Bussers, 1977. Étude comparée de la composition chimique des régions souples et durcies de la cuticule de quatre espèces de sipunculiens. Cahiers de Biologie Marine 18: 135–145.

    Google Scholar 

  • Wetzel, A. & F. Werner, 1981. Morphology and ecological significance of Zoophycos in deep-sea sediments off north-west Africa. Palaeogeogr. Palaeoclimatology Palaeoecology 32: 185–212.

    Google Scholar 

  • Wheeler, W. C., 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12: 1–9.

    CrossRef  Google Scholar 

  • Wheeler, W. C., D. Gladstein & J. DeLaet, 2002. POY: the Optimization of Alignment Characters, version 3.0. Program and documentaition available from ftp.amnh.org/pub/ molecular.

    Google Scholar 

  • Wilheim, M. L. & F. X. Wilheim, 1978. Subunit structure of erythroid cells chromatin. Studia Biophysica 67: 105–106.

    Google Scholar 

  • Winnepenninckx, B., T. Backeljau & R. De Wachter, 1995. Phylogeny of protostome worms derived from 18S rRNA sequences. Molecular Biology and Evolution 12:641–649.

    PubMed  CAS  Google Scholar 

  • Zrzavý, J., V. Hypša & D. F. Tietz, 2001. Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17: 170–198.

    Google Scholar 

  • Zrzavý, J., S. Mihulka, P. Kepka, A. Bezdek, D. Tietz, 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Schulze1, A., Cutler1, E.B., Giribet1, G. (2005). Reconstructing the phylogeny of the Sipuncula. In: Bartolomaeus, T., Purschke, G. (eds) Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Developments in Hydrobiology, vol 179. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3240-4_15

Download citation