Skip to main content

Styles and Productivity of Mud Diapirism along the Middle American Margin

Part I. Margin Evolution, Segmentation, Dewatering and Mud Diapirism

  • Conference paper
Mud Volcanoes, Geodynamics and Seismicity

Abstract

Mud diapirism is a common phenomenon of accretionary convergent margins but less common in erosive margins. Fluid venting associated with mud diapirism is of importance for the dewatering of the forearc and the resulting devolatilisation of the entire subduction zone. The margin offshore Costa Rica is today interpreted as erosive and subdivided into two major structural domains on grounds of the roughness of the downgoing plate: a smooth domain in the north where normal oceanic crust originating at the East Pacific Rise, and a rough southern domain where the margin is uplifted and fractured by the collision of the Cocos Ridge and numerous adjacent volcanic seamounts. These structural differences are reflected in differences in the output at the volcanic arc, dewatering mechanisms, and the abundance and geometry of mud mounds in the forearc. Diapiric mud mound occurrences in the smooth domain are most abundant in the middle and upper slope and apparently do not correlate with the maximum of compactional water release of the incoming sedimentary sequence. We invoke rapid changes in sedimentation rate and addition of accommodation space due to extensional faulting of the wedge to explain the observed mound distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abich, O.W.H., 1857. Über Schlammvulkane und ihre Bedeutung für die Geologie, Ber. Ver. Dt. Naturwiss., 33, 101.

    Google Scholar 

  2. Aliyev, A.A., I.S. Guliyev, I I.S., and Belov, I. S., 2002. Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan (For Period of Years 1810-2001), Nafta, Baku.

    Google Scholar 

  3. Barckhausen, U., Ranero, C.R., von Huene, R., Cande, S.C., and Röser, H.A., 2001. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergant margin and for plate tectonic models, J. Geophys. Res., 106(B9), 19,207–19,220.

    Google Scholar 

  4. Bialas, J., Flueh, E.R., and Bohrmann, G., 1999. FS SONNE, Cruise Report S0144/1&2. PAGANINI, Panama 1999, in GEOMAR Rep., 94, GEOMAR, Kiel.

    Google Scholar 

  5. Bohrmann, G., Heeschen, K., Jung, C., Weinrebe, W., Baranov, B., Cailleau, B., Heath, R., Hühnerbach, V., Hort, M., Masson, D., and Trummer, I., 2002. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin, Terra Nova, 14(2), 69–79.

    Google Scholar 

  6. Christeson, G.L., McIntosh, K.D., and Shipley, T.H., 1999. Structure of the Costa Rica convergent margin, offshore Nicoya Peninsula, J. Geophys. Res., 104(B11), 25,443–25,468.

    Google Scholar 

  7. Däihlmann, A., and de Lange, G.J., 2003. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160, Earth Planetary Sci. Lett., 212, 377–391.

    Google Scholar 

  8. DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1994. Effect of recent revision to the geomagnetic reversal timescale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194.

    Google Scholar 

  9. Dia, A.N., Castrec-Rouelle, M., Boulègue, J., and Comeau, P., 1999. Trinidad mud volcanoes: Where do the expelled fluids come from?, Geochim. Cosmochim. Acta, 63, 1023–1038.

    Google Scholar 

  10. Dimitrov, L.I., 2002. Mud volcanoes — the most important pathway for degassing deeply buried sediments, Earth Sci. Rev., 59, 49–76.

    Google Scholar 

  11. Etiope, G., and Klusman, R.W., 2002. Geologic emissions of methane to the atmosphere, Chemosphere, 49, 777–789.

    Article  PubMed  Google Scholar 

  12. Flueh, E.R., Ranero, C.R. and von Huene, R., 2000. The Costa Rican Pacific margin: from accretion to erosion, Zbl. Geol. Paläont, Part 1, 7/8, 669–678.

    Google Scholar 

  13. Goad, S.T., 1816. Miscellaneous observations on the volcanic eruptions at the islands of Java and Sumbawa, with a particular account of the mud volcano at Grobogan, J. Sci. Arts, 1, 245–258.

    Google Scholar 

  14. Guliyev, I.S., and Feizullayev, A.A., 1996. All about mud volcanoes, Azerbaijan, Geol. Inst. Azerbaijan, Baku.

    Google Scholar 

  15. Harris, R.N. and Wang, K., 2002. Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica, Geophys, Res. Lett., 29(21), doi 10.1029/2002GL015406.

    Google Scholar 

  16. Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., and Garbe-Schönberger, D., 2000. Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America, Geochem., Geophys., Geosyst., 1, 1–42.

    Google Scholar 

  17. Henry, P., Le Pichon, X., Lallemant, S., Lance, S., Martin, J.B., Foucher, J.-P., Fiala-Médioni, A., Rostek, F., Guilhaumou, N. Pranal, V., and Castrec, M., 1996. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: Results from Manon cruise, J. Geophys. Res., 101(B9), 20,297–20,323.

    Google Scholar 

  18. Hoernle, K., Werner, R., Morgan, J.P., Garbe-Schönberger, D., Bryce, J., and Mrazek, J., 2000. Existence of complex spatial zonation in the Galápagos plume for at least 14 m.y., Geology, 28(5), 435–438.

    Google Scholar 

  19. Hovland, M., Hill, A., and Stokes, D., 1997. The structure and geomorphology of the Dashgil mud volcano, Azerbaijan, Geomorphology, 21, 1–15.

    Google Scholar 

  20. Judd, A.G., Hovland, M., Dimitrov, L.I., Gar a Gil, S., and Jukes, V., 2002. The geological methane budget at continental margins and its influence on climate change, Geofluids, 2, 109–126.

    Google Scholar 

  21. Kahn, L.M., Silver, E.A., Orange, D.L., Kochevar, R., and McAdoo, B.G., 1996. Surficial evidence of fluid expulsion from the Costa Rica accretionary prism, Geophys. Res. Lett., 23 (B8), 887–890.

    Google Scholar 

  22. Kimura, G., Silver, E.A., Blum, P., et al., 1997. Costa Rica accretionary wedge, Sites 1039–1043, in Proc. ODP Init. Rpts., Ocean Drilling Program, College Station TX.

    Google Scholar 

  23. Kopf, A., 2002. Significance of Mud Volcanism, Rev. Geophys., 40, doi 10.1029/2000RG000093.

    Google Scholar 

  24. Kopf, A., and Behrmann, J.H., 2000. Extrusion dynamics of mud vulcanoes on the Mediterranean Ridge accretionary complex, in Salt, Shale, and Igneous Diapirs in and around Europe, Vendeville, B., Mart, Y., and Vigneresse, J.-L. (eds.), Geol. Soc., London, 169–204.

    Google Scholar 

  25. Kopf, A., Deyhle, A., and Zuleger, E., 2000. Evidence for deep fluid circulation and gas hydrate dissociation using boron and boron isotopes of pore fluids in forearc sediments from Costa Rica (ODP Leg 170), Mar Geol., 167, 1–28.

    Google Scholar 

  26. Kopf, A., Klaeschen, D., and Mascle, J., 2001. Extreme efficiency of mud volcanism in dewatering accretionary prisms, Earth Planetary Sci. Lett., 189, 295–313.

    Google Scholar 

  27. Mann, P., 1995. Geologic and tectonic development of the Caribbean plate boundary in southern Central America, Geol. Soc. Am. Spec. Pap., 295, 1–349.

    Google Scholar 

  28. McAdoo, B.G., Orange, D.L., Silver, E.A., McIntosh, K.D., Abbott, L., Galewsky, J., Kahn, L.M., and Protti, M., 1996. Seafloor structural observations, Costa Rica accretionary prism, Geophys. Res. Lett., 23(B8), 883–886.

    Google Scholar 

  29. McIntosh, K.D. and Sen, M.K., 2000. Geophysical evidence for dewatering and deformation processes in the ODP Leg 170 area offshore Costa Rica, Earth Planetary Sci. Lett., 178, 125–138.

    Google Scholar 

  30. McIntosh, K.D., and Silver, E.A., 1996. Using 3D Seismic reflection data to find fluid seeps from the Costa Rica accretionary prism, Geophys. Res. Lett., 23(8), 895–898.

    Google Scholar 

  31. Meschede, M., Zweigel, P., and Kiefer, E., 1999. Subsidence and extension at a convergent plate margin: evidence for subduction erosion off Costa Rica, Terra Nova, 11, 112–117.

    Google Scholar 

  32. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates, Mar Geol., 167, 29–42.

    Google Scholar 

  33. Milkov, A.V., Sassen, R., Apanasovich, T.V., and Dadashev, F.G., 2003. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean, Geophys. Res. Lett., 30(B2), doi 10.1029/2002GL016358.

    Google Scholar 

  34. Moritz, E., Bornholdt, S., Westphal, H., and Meschede, M., 2000. Sediment subduction lacking accretion at the Costa Rica convergent margin (ODP Leg 170), Earth Planetary Sci. Lett., 174, 301–312.

    Google Scholar 

  35. Patino, L.C., Carr, M.J., and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input, Contrib. Mineral. Petrol., 138, 265–283.

    Google Scholar 

  36. Pecher, I.A., Kukowski, N., Huebscher, C., Greinert, J., Bialas, J., and GEOPEG Working Group, 2001. The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone — new evidence from Lima Basin, Peru Margin, Earth Planetary Sci. Lett., 185, 343–354.

    Google Scholar 

  37. Pecher, I.A., Ranero, C.R., von Huene, R., Minshull, T.A., and Singh, S.C., 1998. The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin, Geophys. J. Int., 133, 219–229.

    Google Scholar 

  38. Protti, M., Güendel, F., and McNally, K., 1995. Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica, in Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Mann, P. (ed.), GSA Special Papers, Boulder CO, 309–343.

    Google Scholar 

  39. Ranero, C.R., Morgan, J.P., McIntosh, K., and Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature, 425, 367–373.

    PubMed  Google Scholar 

  40. Ranero, C.R., Morgan, J.P., McIntosh, K.D., and Reichert, C., 2001. Flexural faulting and mantle serpentinization at the Middle America Trench, Eos, 1–82.

    Google Scholar 

  41. Ranero, C.R., and von Huene, R., 2000. Subduction erosion along the Middle America convergent margin, Nature, 404, 748–752.

    PubMed  Google Scholar 

  42. Ranero, C.R., Flueh, E.R., Duarte, M., Baca, D., and McIntosh, K.D., 2000. A cross section of the convergent Pacific margin of Nicaragua, Tectonics, 19(2), 335–357.

    Google Scholar 

  43. Rhakmanov, R.R., 1987. Mud Volcanoes and Their Importance in Forecasting of Subsurface Petroleum Potential (in Russian), Nedra, Moscow.

    Google Scholar 

  44. Robertson, A.H.F. and Shipboard Scientific Party, 1996. Mud volcanism on the Mediterranean Ridge: Initial results of Ocean Drilling Program Leg 160, Geology, 24(3), 239–242.

    Google Scholar 

  45. Ruepke, L.H., Morgan, J.R., Hort, M., and Connolly, J.A.D., 2002. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids?, Geology, 30(11), 1035–1038.

    Google Scholar 

  46. Ruppel, C., and Kinoshita, M., 2000. Fluid, methane, and energy flux in an active margin gas hydrate province, offshore Costa Rica, Earth Planetary Sci. Lett., 179, 153–165.

    Google Scholar 

  47. Saffer, D.M., Silver, E.A., Fisher, A.T., Tobin, H., and Moran, K., 2000. Inferred pore pressures at the Costa Rica subduction zone: Implications fo dewatering processes, Earth Planetary Sci. Lett., 177, 193–207.

    Google Scholar 

  48. Shipley, T.H., McIntosh, K.D., Silver, E.A. and Stoffa, P.L., 1992. Three-Dimensional Seismic Imaging of the Costa Rica Accretionary Prism: Structural Diversity in a Small Volume of the Lower Slope, J. Geophys. Res., 97(B4), 4439–4459.

    Google Scholar 

  49. Shipley, T.H., Stoffa, P.L., and Dean, D.F., 1990. Underthrust Sediments, Fluid Migration Paths, and Mud Volcanoes Associated with the Accretionary Wedge off Costa Rica: Middle America Trench, J. Geophys. Res., 95(B6), 8743–8752.

    Google Scholar 

  50. Silver, E.A., Miriam, K., Andew, F., Morris, J., McIntosh, K., Saffer, D., 2000. Fluid flow paths in the Middle America Trench and Costa Rica margin, Geology, 28(8), 679–682.

    Google Scholar 

  51. Silver, E.A., 2001. Leg 170: Synthesis of Fluid-Structural Relationships of the Pacific Margin of Costa Rica, in Proc. ODP Sci. Res., Ocean Drilling Program, College Station TX.

    Google Scholar 

  52. Sahling, H., Ranero, C.R., Soeding, E., Weinrebe, W., Huehnerbach, V. and Masson, D.G., Abundant indication for fluid venting connected to subduction erosion at the continental margin of Costa Rica and Nicaragua, Marine Geology, in prep.

    Google Scholar 

  53. Soeding, E., Wallmann, K., Suess, E., and Flueh, E., 2003. RV METEOR, Cruise Report M54/2+3. Fluids and Subduction, Costa Rica 2002, in GEOMAR Rep., 111, GEOMAR, Kiel, 2003.

    Google Scholar 

  54. Stoffa, P.L., Shipley, T.H., Kessinger, W., Dean, D.F., Elde, R., Silver, E.A., Reed, D., and Aguilar, A., 1991. Three-Dimensional Seismic Imaging of the Costa Rica Accretionary Prism: Field Program and Migration Examples, J. Geophys. Res., 96(B13), 21,693–21,712.

    Google Scholar 

  55. Vannucchi, P., Ranero, C.R., Galeotti, S., Straub, S.M., Scholl, D.W., and McDougall-Ried, K., 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for non-steady rates of crustal recycling at subduction zones, J. Geophys. Res., 108, n.B 11, 2511.

    Google Scholar 

  56. Vannucchi, P., Scholl, D.W., Meschede, M., and McDougall-Ried, K., 2001. Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data and regional geology of the Nicoya Peninsula, Tectonics, 20, 649–668.

    Google Scholar 

  57. Von Huene, R., Ranero, C.R., Weinrebe, W., and Hinz, K., 2000. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism, Tectonics, 19(2), 314–334.

    Google Scholar 

  58. Von Huene, R. et al., 1985. Site 565, in Init. Repts. DSDP, von Huene, R. and J. Aubouin, J. (eds.), US Govt. Printing Office, Washington DC, 21–77.

    Google Scholar 

  59. Weinrebe, W., and Flueh, E., 2002. FS/RV SONNE, Cruise Report SO163. Subduction 1, Costa Rica 2002, in GEOMAR Rep., 106, GEOMAR, Kiel.

    Google Scholar 

  60. Yassir, N.A., 1989. Mud volcanos and the behaviour of overpressured clays and silts, PhD thesis,Univ. Coll. London, London.

    Google Scholar 

  61. Ye, S., Bialas, J., Flueh, E.R., Stavenhagen, A.U., and von Huene, R., 1996. Crustal structure of the Middle American Trench off Costa Rica from wide-angle seismic data, Tectonics, 15 (5), 1006–1021.

    Google Scholar 

  62. Zuleger, E., Gieskes, J.M., and You, C.-F., 1996. Interstitial water chemistry of sediments of the Costa Rica accretionary complex off the Nicoya Peninsula, Geophys. Res. Lett., 23(B8), 899–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Moerz, T. et al. (2005). Styles and Productivity of Mud Diapirism along the Middle American Margin. In: Martinelli, G., Panahi, B. (eds) Mud Volcanoes, Geodynamics and Seismicity. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3204-8_4

Download citation

Publish with us

Policies and ethics