Mud Volcanoes as Natural Strainmeters

A working hypothesis
  • Dario Albarello
Conference paper
Part of the NATO Science Series book series (NAIV, volume 51)

Abstract

Due to the sub-critical status of the seismogenic crust, relatively small strain fluctuations (>0.1 strain) induced by post-seismic stress redistribution could significantly affect the seismic hazard on a regional scale (tens to thousands of km) in the medium-term (months to tens of years). The physical feasibility of mud volcano monitoring for the detection of crustal strain field fluctuations is discussed. Simple physical arguments are considered to evaluate the response of the mud volcanic system, in terms liquid-outflow or gas discharge variations, to slow pore pressure changes in the reservoir. The application of a new remote sensing technique for large-scale/medium-term monitoring is also suggested.

Key words

Mud volcanoes Strain field Geodynamics Earthquakes Seismic hazard 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albarello, D. Bonafede, M., 1990. Stress diffusion across laterally heterogeneous plates. Tectonophysics, 179, 121–130.CrossRefGoogle Scholar
  2. 2.
    Albarello, D., Martinelli, G., 1994. Piezometric levels as a possible geodynamic indicator: analysis of the data from a regional deep waters monitoring network in Northern Italy. Geophys. Res. Lett., 21, 1955–1958.Google Scholar
  3. 3.
    Albarello, D., Lapenna, V., Martinelli, G. and Telesca, L., 2003. Extracting quantitative dynamics from 222Rn gaseous emissions of mud volcanoes. Environmetrics, 14, 63–71.CrossRefGoogle Scholar
  4. 4.
    Anderson, D., 1975. Accelerated plate tectonics. Science, 17, 1077–1079.Google Scholar
  5. 5.
    Batchelor, G.K., 1967. Fluid dynamics: an introduction. University Press, Cambridge, 615 PP.Google Scholar
  6. 6.
    Belardinelli, M.E., Cocco, M., Coutant, O., Cotton, F., 1999. Redistribution of dynamic stress during coseismic ruptures: evidence for fault interaction and earthquake triggering. J.Geophys. Res., 104,B7, 14925–14945.Google Scholar
  7. 7.
    Bodvarsson, G., 1970. Confined fluids as strain meters. J.Geophys.Res., 75,14, 2711–2718.Google Scholar
  8. 8.
    Brennen, C.E., 1995. Cavitation and bubble dynamics. University Press, Cambridge.Google Scholar
  9. 9.
    Brown, K.M., 1990. The nature and significance of mud diapirs and diatremes for accretionary systems, J.Geophys.Res., 95, 8969–8982.Google Scholar
  10. 10.
    Carson, B., Screaton, E.J., 1998. Fluid flow in accretionary prisms: evidence for focused, time-variable discharge. Rev. Geophys., 36,3, 329–351.Google Scholar
  11. 11.
    Castellaro, S., Mulargia, F., 2001. A simple but effective cellular automation for earthquakes. Geophys. J. Int., 144, 609–624.Google Scholar
  12. 12.
    Cornell, C.A. 1968. Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583–1606.Google Scholar
  13. 13.
    Giardini, D., Basham, P. (eds.) “Global seismic hazard assessment program”, ILP publication 209, Ann.Geofis., 36,3–4, 181–200.Google Scholar
  14. 14.
    Harris, R.A., 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 103,B10, 24347–24358.Google Scholar
  15. 15.
    Kagan, Y.Y., 1992. Seismicity: turbulence of solids. Nonlin. Sci. Today, 2,1, 2–13.Google Scholar
  16. 16.
    Kagan, Y.Y., 1994. Observational evidence for earthquakes as a non linear dynamic process. Physica D, 77, 160–192.Google Scholar
  17. 17.
    Kasahara, K., 1979. Migration of crustal deformation. Tectonophys., 52, 329–341.Google Scholar
  18. 18.
    King, G.C.P, Stein, R.S., Lin, J., 1994. Static stress change and the triggering of earthquakes. Bull.Seism.Soc.Am., 84,3, 935–953.Google Scholar
  19. 19.
    Kopf, A., 2002. Significance of mud volcanism. Rev.Geophys., 40,2, 1–52.Google Scholar
  20. 20.
    Kümpel, H.-J., 1992. About the potential of wells to reflect stress variations within inhomogeneous crust. Tectonophys., 211, 317–336.Google Scholar
  21. 21.
    Main, I., 1995. Earthquake as critical phenomena: implications for probabilistic seismic hazard analysis. Bull.Seism.Soc.Am., 85,5, 1299–1308.Google Scholar
  22. 22.
    Main, I., 1996. Statistical physics, seismogenesis and seismic hazard. Rev.Geophys., 34,4, 433–462.Google Scholar
  23. 23.
    Mantovani, E., Albarello, D., 1997. Middle-term precursors of strong earthquakes in southern Italy. Phys. Earth Planet. Int., 101, 49–60.Google Scholar
  24. 24.
    Martinelli, G., Albarello, D., Mucciarelli, M., 1995 — Radon emission from mud volcanoes in Northern Italy: possible connection with local seismicity. Geophys. Res. Lett., 22,15, 1989–1992.Google Scholar
  25. 25.
    McGuire, R.K., 1993a. Computations of seismic hazard. In Giardini, D. and Basham, P (eds.) “Global seismic hazard assessment program”, ILP publication 209, Ann.Geofis., 363–4, 181–200.Google Scholar
  26. 26.
    McGuire, R.K. (Ed.), 1993b, The practice of earthquake hazard assessment, IASPEI, Denver, 1–284.Google Scholar
  27. 27.
    Muir-Wood, R. and King, G.C.P., 1993. Hydrologic signatures of earthquake strain. J.Geophys. Res., 98,B12, 22035–22068.Google Scholar
  28. 28.
    Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bull.Seism.Soc.Am., 78, 1907–1929.Google Scholar
  29. 29.
    Piersanti, A., Spada, G., Sabadini, R., 1997. Global post-seismic rebound of a viscoelastic earth: theory for finite faults and application to the 1964 Alaska earthquake. J.Geophys. Res., 102, 477–492.Google Scholar
  30. 30.
    Pollitz, F.F., Peltzer, G., Burgmann, R., 2000. Mobility of continental mantle: evidence form post-seismic geodetic observations following the 1992 Landers earthquake. J. Geophys. Res., 105, 8035–8054.Google Scholar
  31. 31.
    Ranalli, G., 1995. Rheology of the Earth. Chapman & Hall, London, 413 pp.Google Scholar
  32. 32.
    Rydelek, P.A., Sacks, I.S., 1990. Asthenospehric viscosity and stress diffusion: a mechanism to explain correlated earthquakes and surface deformation in NE Japan. Geophys.J.Int., 100, 39–58.Google Scholar
  33. 33.
    Rydelek, P.A., Sacks, I.S., 1999. Large earthquake occurrence affected by small stress changes. Bull.Seism.Soc.Am., 89, 822–828.Google Scholar
  34. 34.
    Roeloffs, E., 1996. Poroelastic techniques in the study of Earthquake related phenomena. Dmowska R. and Saltzman G. (eds.), Advances in Geophysics, 37, 135–195.Google Scholar
  35. 35.
    Rossi, G., Zadro, M., 1996. Long-term crustal deformations in NE Italy revealed by tilt-strain gauges. Phys. Earth Planet. Int., 97, 55–70.Google Scholar
  36. 36.
    Sacks, I.S., Rydelek, P.A., 1995. Earthquake “quanta” as an explanation of observed magnitudes and stress drops. Bull.Seism.Soc.Am., 85,3, 808–813.Google Scholar
  37. 37.
    Stein, R.S., Barka, A.A., Dietrich, J.H., 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J.Int., 128, 594–604.Google Scholar
  38. 38.
    Tamrazyan, G.P., 1982. Peculiarities in the manifestation of gaseous-mud volcanoes. Nature, 240, 406–408.Google Scholar
  39. 39.
    Tramutoli, V, Di Bello, G., Pergola, N., Piscitelli, S., 2001. Robust satellite techniques for remote sensing of seismically active areas. Ann. of Geophys., 44,2, 295–312.Google Scholar
  40. 40.
    Turcotte, D.L., 1992. Fractals and Chaos in Geology and Geophysics. University Press, Cambridge, 398 pp.Google Scholar
  41. 41.
    Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd edition, University Press, Cambridge, 456 pp.Google Scholar
  42. 42.
    Viti, M., D’Onza, F., Mantovani, E., Albarello, D., Cenni, N., 2003. Post-seismic relaxation and earthquake triggering in the Southern Adriatic region. Geophys. J. Int., 153, 645–657.Google Scholar
  43. 43.
    Wang, H.F., 2000. Theory of linear poroelasticity. Princeton Univ.Press, Princeton, 287 PP.Google Scholar
  44. 44.
    Wakita, H., Nakamura, Y., Sano, Y., 1988. Short term and intermediate term geochemical precursors. Pure Appl.Geophys., 126, 2657–278.Google Scholar
  45. 45.
    Zadro, M., Rossi, G., 1991. Long term strain variations in Friuli (NE Italy) seismic area. Proc. of the Intern. Conf. “Earthquake prediction: state-of-the art”, Strasbourg, 435–441.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Dario Albarello
    • 1
  1. 1.Dept. of Earth SciencesUniversity of SienaSienaItaly

Personalised recommendations