Skip to main content

Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications

  • Conference paper
Proceedings of the Conference on Applied Mathematics and Scientific Computing

Abstract

Skew-Hamiltonian and Hamiltonian eigenvalue problems arise from a number of applications, particularly in systems and control theory. The preservation of the underlying matrix structures often plays an important role in these applications and may lead to more accurate and more efficient computational methods. We will discuss the relation of structured and unstructured condition numbers for these problems as well as algorithms exploiting the given matrix structures. Applications of Hamiltonian and skew-Hamiltonian eigenproblems are briefly described.

Supported by the DFG Research Center “Mathematics for key technologies” (FTZ 86) in Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absil, P.-A. and Van Dooren, P. (2002). Two-sided Grassmann Rayleigh quotient iteration. Submitted to SIAM J. Matrix Anal. Appl.

    Google Scholar 

  • Ammar, G., Benner, P., and Mehrmann, V. (1993). A multishift algorithm for the numerical solution of algebraic Riccati equations. Electr. Trans. Num. Anal., 1:33–48.

    MathSciNet  Google Scholar 

  • Ammar, G. and Mehrmann, V. (1991). On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl., 149:55–72.

    Article  MathSciNet  Google Scholar 

  • Anderson, B. and Moore, J. (1990). Optimal Control—Linear Quadratic Methods. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J. J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition.

    Google Scholar 

  • Antoulas, A. C. and Sorensen, D. C. (2001). Approximation of large-scale dynamical systems: an overview. Int. J. Appl. Math. Comput. Sci., 11(5):1093–1121.

    MathSciNet  Google Scholar 

  • Apel, T., Mehrmann, V., and Watkins, D. S. (2002). Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg, 191:4459–4473.

    Article  Google Scholar 

  • Bai, Z., Demmel, J., and McKenney, A. (1993). On computing condition numbers for the non-symmetric eigenproblem. ACM Trans. Math. Software, 19(2):202–223.

    Article  MathSciNet  Google Scholar 

  • Bai, Z. and Demmel, J. W. (1993). On swapping diagonal blocks in real Schur form. Linear Algebra Appl., 186:73–95.

    Article  MathSciNet  Google Scholar 

  • Bartels, R. H. and Stewart, G. W. (1972). Algorithm 432: The solution of the matrix equation AX − BX = C. Communications of the ACM, 8:820–826.

    Article  Google Scholar 

  • Benner, P. (1997). Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Logos-Verlag, Berlin, Germany.

    Google Scholar 

  • Benner, P. (1999). Computational methods for linear-quadratic optimization. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, No. 58:21–56.

    MATH  MathSciNet  Google Scholar 

  • Benner, P. (2000). Symplectic balancing of Hamiltonian matrices. SIAM J. Sci. Comput., 22(5):1885–1904.

    Article  MathSciNet  Google Scholar 

  • Benner, P., Byers, R., and Barth, E. (2000). Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices I: The square-reduced method. ACM Trans. Math. Software, 26:49–77.

    Article  Google Scholar 

  • Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2004). Robust numerical methods for robust control. Technical Report 06-2004, Institut für Mathematik, TU Berlin.

    Google Scholar 

  • Benner, P. and Faßbender, H. (1997). An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl., 263:75–111.

    Article  MathSciNet  Google Scholar 

  • Benner, P. and Faßbender, H. (2001). A hybrid method for the numerical solution of discrete-time algebraic Riccati equations. Contemporary Mathematics, 280:255–269.

    Google Scholar 

  • Benner, P. and Kressner, D. (2003). Balancing sparse Hamiltonian eigenproblems. To appear in Linear Algebra Appl.

    Google Scholar 

  • Benner, P. and Kressner, D. (2004). Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II. In preparation. See also http://www.math.tu-berlin.de/~kressner/hapack/.

    Google Scholar 

  • Benner, P., Mehrmann, V., and Xu, H. (1997). A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math., 86:17–43.

    Article  MathSciNet  Google Scholar 

  • Benner, P., Mehrmann, V., and Xu, H. (1998). A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numerische Mathematik, 78(3):329–358.

    Article  MathSciNet  Google Scholar 

  • Bischof, C. and Van Loan, C. F. (1987). The WY representation for products of Householder matrices. SIAM J. Sci. Statist. Comput., 8(1):S2–S13. Parallel processing for scientific computing (Norfolk, Va., 1985).

    Article  Google Scholar 

  • Bojanczyk, A., Golub, G. H., and Dooren, P. V. (1992). The periodic Schur decomposition; algorithm and applications. In Proc. SPIE Conference, volume 1770, pages 31–42.

    Article  Google Scholar 

  • Boyd, S. and Balakrishnan, V. (1990). A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L-norm. Systems Control Lett., 15(1):1–7.

    Article  MathSciNet  Google Scholar 

  • Boyd, S., Balakrishnan, V., and Kabamba, P. (1989). A bisection method for computing the H norm of a transfer matrix and related problems. Math. Control, Signals, Sys., 2:207–219.

    MathSciNet  Google Scholar 

  • Bruinsma, N. A. and Steinbuch, M. (1990). A fast algorithm to compute the H-norm of a transfer function matrix. Sys. Control Lett., 14(4):287–293.

    Article  MathSciNet  Google Scholar 

  • Bunch, J. R. (1987). The weak and strong stability of algorithms in numerical linear algebra. Linear Algebra Appl., 88/89:49–66.

    Article  MathSciNet  Google Scholar 

  • Bunse-Gerstner, A. (1986). Matrix factorizations for symplectic QR-like methods. Linear Algebra Appl., 83:49–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Bunse-Gerstner, A. and Faßbender, H. (1997). A Jacobi-like method for solving algebraic Riccati equations on parallel computers. IEEE Trans. Automat. Control, 42(8):1071–1084.

    Article  MathSciNet  Google Scholar 

  • Bunse-Gerstner, A. and Mehrmann, V. (1986). A symplectic QR like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Automat. Control, 31(12):1104–1113.

    Article  MathSciNet  Google Scholar 

  • Bunse-Gerstner, A., Mehrmann, V., and Watkins, D. S. (1989). An SR algorithm for Hamiltonian matrices based on Gaussian elimination. In XII Symposium on Operations Research (Passau, 1987), volume 58 of Methods Oper. Res., pages 339–357. Athenäum/Hain/Hanstein, Königstein.

    Google Scholar 

  • Burke, J. V., Lewis, A. S., and Overton, M. L. (2003a). Pseudospectral components and the distance to uncontrollability. Submitted to SIAM J. Matrix Anal. Appl.

    Google Scholar 

  • Burke, J. V., Lewis, A. S., and Overton, M. L. (2003b). Robust stability and a criss-cross algorithm for pseudospectra. IMA J. Numer. Anal., 23(3):359–375.

    Article  MathSciNet  Google Scholar 

  • Byers, R. (1983). Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation. PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca, NY.

    Google Scholar 

  • Byers, R. (1986). A Hamiltonian QR algorithm. SIAM J. Sci. Statist. Comput., 7(1):212–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Byers, R. (1988). A bisection method for measuring the distance of a stable to unstable matrices. SIAM J. Sci. Statist. Comput., 9:875–881.

    Article  MATH  MathSciNet  Google Scholar 

  • Byers, R. (1990). A Hamiltonian-Jacobi algorithm. IEEE Trans. Automat. Control, 35:566–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Byers, R. and Nash, S. (1987). On the singular “vectors” of the Lyapunov operator. SIAM J. Algebraic Discrete Methods, 8(1):59–66.

    MathSciNet  Google Scholar 

  • Chatelin, F. (1984). Simultaneous Newton's iteration for the eigenproblem. In Defect correction methods (Oberwolfach, 1983), volume 5 of Comput. Suppl., pages 67–74. Springer, Vienna.

    Google Scholar 

  • Demmel, J. W. (1987). Three methods for refining estimates of invariant subspaces. Computing, 38:43–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Dongarra, J. J., Sorensen, D. C., and Hammarling, S. J. (1989). Block reduction of matrices to condensed forms for eigenvalue computations. J. Comput. Appl. Math., 27(1–2):215–227. Reprinted in Parallel algorithms for numerical linear algebra, 215–227, North-Holland, Amsterdam, 1990.

    Article  MathSciNet  Google Scholar 

  • Faßbender, H., Mackey, D. S., and Mackey, N. (2001). Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems. Linear Algebra Appl., 332/334:37–80.

    Article  Google Scholar 

  • Faßbender, H., Mackey, D. S., Mackey, N., and Xu, H. (1999). Hamiltonian square roots of skew-Hamiltonian matrices. Linear Algebra Appl., 287(1–3):125–159.

    Article  MathSciNet  Google Scholar 

  • Ferng, W., Lin, W.-W., and Wang, C.-S. (1997). The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations. Comput. Math. Appl., 33(10):23–40.

    Article  MathSciNet  Google Scholar 

  • Freiling, G., Mehrmann, V., and Xu, H. (2002). Existence, uniqueness, and parametrization of Lagrangian invariant subspaces. SIAM J. Matrix Anal. Appl., 23(4):1045–1069.

    Article  MathSciNet  Google Scholar 

  • Gantmacher, F. (1960). The Theory of Matrices. Chelsea, New York.

    Google Scholar 

  • Genin, Y., Van Dooren, P., and Vermaut, V. (1998). Convergence of the calculation of H norms and related questions. In Beghi, A., Finesso, L., and Picci, G., editors, Proceedings of the Conference on the Mathematical Theory of Networks and Systems, MTNS '98, pages 429–432.

    Google Scholar 

  • Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. Johns Hopkins University Press, Baltimore, MD, third edition.

    Google Scholar 

  • Green, M. and Limebeer, D. (1995). Linear Robust Control. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gu, M. (2000). New methods for estimating the distance to uncontrollability. SIAM J. Matrix Anal. Appl., 21(3):989–1003.

    Article  MATH  MathSciNet  Google Scholar 

  • Guo, C. and Lancaster, P. (1998). Analysis and modification of Newton's method for algebraic Riccati equations. Math. Comp., 67:1089–1105.

    Article  MathSciNet  Google Scholar 

  • Hench, J. J. and Laub, A. J. (1994). Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control, 39(6):1197–1210.

    Article  MathSciNet  Google Scholar 

  • Higham, N. J. (1996). Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

    Google Scholar 

  • Hüper, K. and Van Dooren, P. (2003). New algorithms for the iterative refinement of estimates of invariant subspaces. Journal Future Generation Computer Systems, 19:1231–1242.

    Article  Google Scholar 

  • Hwang, T.-M., Lin, W.-W., and Mehrmann, V. (2003). Numerical solution of quadratic eigenvalue problems with structure-preserving methods. SIAM J. Sci. Comput., 24(4):1283–1302.

    Article  MathSciNet  Google Scholar 

  • Kleinman, D. (1968). On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control, AC-13:114–115.

    Article  Google Scholar 

  • Konstantinov, M., Mehrmann, V., and Petkov, P. (2001). Perturbation analysis of Hamiltonian Schur and block-Schur forms. SIAM J. Matrix Anal. Appl., 23(2):387–424.

    Article  MathSciNet  Google Scholar 

  • Kressner, D. (2003a). Block algorithms for orthogonal symplectic factorizations. BIT, 43(4):775–790.

    Article  MATH  MathSciNet  Google Scholar 

  • Kressner, D. (2003b). A Matlab toolbox for solving skew-Hamiltonian and Hamiltonian eigenvalue problems. Online available from http:/www.math.tu-berlin.de/~kressner/hapack/matlab/.

    Google Scholar 

  • Kressner, D. (2003c). The periodic QR algorithm is a disguised QR algorithm. To appear in Linear Algebra Appl.

    Google Scholar 

  • Kressner, D. (2003d). Perturbation bounds for isotropic invariant subspaces of skew-Hamiltonian matrices. To appear in SIAMJ. Matrix Anal. Appl..

    Google Scholar 

  • Kressner, D. (2004). Numerical Methods and Software for General and Structured Eigenvalue Problems. PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany.

    Google Scholar 

  • Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati Equation. Oxford University Press, Oxford.

    Google Scholar 

  • Lin, W.-W. and Ho, T.-C. (1990). On Schur type decompositions for Hamiltonian and symplectic pencils. Technical report, Institute of Applied Mathematics, National Tsing Hua University, Taiwan.

    Google Scholar 

  • Lin, W.-W., Mehrmann, V., and Xu, H. (1999). Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl., 302/303:469–533.

    Article  MathSciNet  Google Scholar 

  • Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Mehrmann, V. and Watkins, D. S. (2000). Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput., 22(6):1905–1925.

    Article  MathSciNet  Google Scholar 

  • Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables. Academic Press, New York.

    Google Scholar 

  • Paige, C. and Van Loan, C. F. (1981). A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl., 41:11–32.

    Article  MathSciNet  Google Scholar 

  • Petkov, P. H., Christov, N. D., and Konstantinov, M. M. (1991). Computational Methods for Linear Control Systems. Prentice-Hall, Hertfordshire, UK.

    Google Scholar 

  • Raines, A. C. and Watkins, D. S. (1994). A class of Hamiltonian-symplectic methods for solving the algebraic Riccati equation. Linear Algebra Appl., 205/206:1045–1060.

    Article  MathSciNet  Google Scholar 

  • Schreiber, R. and Van Loan, C. F. (1989). A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Statist. Comput., 10(1):53–57.

    Article  MathSciNet  Google Scholar 

  • Sima, V. (1996). Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  • Sorensen, D. C. (2002). Passivity preserving model reduction via interpolation of spectral zeros. Technical report TR02-15, ECE-CAAM Depts, Rice University.

    Google Scholar 

  • Stefanovski, J. and Trenčevski, K. (1998). Antisymmetric Riccati matrix equation. In 1st Congress of the Mathematicians and Computer Scientists of Macedonia (Ohrid, 1996), pages 83–92. Sojuz. Mat. Inform. Maked., Skopje.

    Google Scholar 

  • Stewart, G. W. (1971). Error bounds for approximate invariant subspaces of closed linear operators. SIAM J. Numer. Anal., 8:796–808.

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart, G. W. (1973). Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev., 15:727–764.

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart, G. W. (2001). Matrix algorithms. Vol. II. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Eigensystems.

    Google Scholar 

  • Stewart, G. W. and Sun, J.-G. (1990). Matrix Perturbation Theory. Academic Press, New York.

    Google Scholar 

  • Sun, J.-G. (1998). Stability and accuracy: Perturbation analysis of algebraic eigenproblems. Technical report UMINF 98-07, Department of Computing Science, University of Umeå, Umeå, Sweden.

    Google Scholar 

  • Tisseur, F. (2001). Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems. SIAMJ. Matrix Anal. Appl., 22(4):1038–1057.

    Article  MATH  MathSciNet  Google Scholar 

  • Tisseur, F. (2003). A chart of backward errors for singly and doubly structured eigenvalue problems. SIAM J. Matrix Anal. Appl., 24(3):877–897.

    Article  MATH  MathSciNet  Google Scholar 

  • Tisseur, F. and Meerbergen, K. (2001). The quadratic eigenvalue problem. SIAM Rev., 43(2):235–286.

    Article  MathSciNet  Google Scholar 

  • Van Dooren, P. (2003). Numerical Linear Algebra for Signal Systems and Control. Draft notes prepared for the Graduate School in Systems and Control.

    Google Scholar 

  • VanLoan, C. F. (1975). A general matrix eigenvalue algorithm. SIAM J. Numer. Anal., 12(6):819–834.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Loan, C. F. (1984a). How near is a matrix to an unstable matrix? Lin. Alg. and its Role in Systems Theory, 47:465–479.

    Google Scholar 

  • Van Loan, C. F. (1984b). A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl., 61:233–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Watkins, D. S. (2002). On Hamiltonian and symplectic Lanczos processes. To appear in Linear Algebra Appl.

    Google Scholar 

  • Watkins, D. S. and Elsner, L. (1991). Convergence of algorithms of decomposition type for the eigenvalue problem. Linear Algebra Appl., 143:19–47.

    Article  MathSciNet  Google Scholar 

  • Wilkinson, J. H. (1965). The algebraic eigenvalue problem. Clarendon Press, Oxford.

    Google Scholar 

  • Xu, H. and Lu, L. Z. (1995). Properties of a quadratic matrix equation and the solution of the continuous-time algebraic Riccati equation. Linear Algebra Appl., 222:127–145.

    Article  MathSciNet  Google Scholar 

  • Zhou, K., Doyle, J. C., and Glover, K. (1996). Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Benner, P., Kressner, D., Mehrmann, V. (2005). Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications. In: Drmač, Z., Marušić, M., Tutek, Z. (eds) Proceedings of the Conference on Applied Mathematics and Scientific Computing. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3197-1_1

Download citation

Publish with us

Policies and ethics