Skip to main content

Is Dark Matter Supersymmetric?

  • Conference paper
Particle Physics and Cosmology: The Interface

Part of the book series: NATO Science Series ((NAII,volume 188))

  • 533 Accesses

Abstract

From the precise relic density measurement by WMAP the WIMP annihilation cross section can be determined in a model independent way. If the WIMPS are postulated to be the neutralinos of Supersymmetry, then only a limited region of parameter space matches this annihilation cross section. It is shown that the resulting positrons, antiprotons and gamma rays from the neutralino annihilation (mainly into \(b\bar b\) quark pairs) provide the correct shape and order of magnitude for the missing gamma and hard positron fluxes in the Galactic Models and are consistent with the antiproton fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The results of the first year of operation of the WMAP satellite can be found on the Web: http://map.gsfc.nasa.gov/m_mm/pub_papers/firstyear.html

    Google Scholar 

  2. C.L. Bennett, et al., astro-ph/0302207.

    Google Scholar 

  3. D.N. Spergel, et al., astro-ph/0302209.

    Google Scholar 

  4. L. Verde et al., astro-ph/0302218

    Google Scholar 

  5. J. Ellis et al., Nucl. Phys. B238 (1984) 453.

    Article  Google Scholar 

  6. G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267 (1996) 195.

    Article  Google Scholar 

  7. I.V. Moskalenko, A.W. Strong, J.F. Ormes and M.S. Potgieter, Astrophys. J. 565 (2002) 280.

    Article  Google Scholar 

  8. A.W. Strong, I.V. Moskalenko and O. Reimer, Astrophys. J. 537 (2000) 763.

    Article  Google Scholar 

  9. A.W. Strong, I.V. Moskalenko, S.G. Mashnik and J.F. Ormes, Astrophys. J. 586 (2003) 1050.

    Article  Google Scholar 

  10. L. Bergström, Rept. Prog. Phys. 63 (2000) 793 [arXiv:hep-ph/0002126]

    Article  Google Scholar 

  11. J. L. Feng, K. T. Matchev and F. Wilczek, Phys. Rev. D 63 (2001) 045024 [arXiv:astro-ph/0008115].

    Article  Google Scholar 

  12. A. Morselli, Int. J. Mod. Phys. A 17 (2002) 1829.

    Article  Google Scholar 

  13. F. Donato, N. Fornengo, D. Maurin, P. Salati and R. Taillet, arXiv:astro-ph/0306207.

    Google Scholar 

  14. J. Edsjö, arXiv:astro-ph/0211354.

    Google Scholar 

  15. E. A. Baltz, J. Edsjö, K. Freese and P. Gondolo, Phys. Rev. D 65 (2002) 063511 [arXiv:astro-ph/0109318].

    Article  Google Scholar 

  16. L. Bergström, J. Edsjö and C. Gunnarsson, Phys. Rev. D 63 (2001) 083515 [arXiv:astro-ph/0012346].

    Article  Google Scholar 

  17. P. Ullio, L. Bergström, J. Edsjö and C. Lacey, Phys. Rev. D 66 (2002) 123502 [arXiv:astro-ph/0207125].

    Article  Google Scholar 

  18. A. Cesarini, F. Fucito, A. Lionetto, A. Morselli and P. Ullio, arXiv:astro-ph/0305075.

    Google Scholar 

  19. P. Ullio, Int. J. Mod. Phys. A 17 (2002) 1777.

    Article  Google Scholar 

  20. A. Bottino, F. Donato, N. Fornengo and P. Salati, Phys. Rev. D 58 (1998) 123503 [arXiv:astro-ph/9804137].

    Article  Google Scholar 

  21. G. Jungman and M. Kamionkowski, Phys. Rev. D 51 (1995) 3121 [arXiv:hep-ph/9501365].

    Article  Google Scholar 

  22. A. Bottino, V. de Alfaro, N. Fornengo, A. Morales, J. Puimedon and S. Scopel, Mod. Phys. Lett. A 7 (1992) 733.

    Article  Google Scholar 

  23. L. Bergström, P. Ullio and J. H. Buckley, Astropart. Phys. 9 (1998) 137 [arXiv:astro-ph/9712318].

    Article  Google Scholar 

  24. A.W. Strong and I.V. Moskalenko, Astrophys. J. 509 (1998) 212.

    Article  Google Scholar 

  25. I.V. Moskalenko and A.W. Strong, Astrophys. J. 493 (1998) 694.

    Article  Google Scholar 

  26. DarkSUSY, P. Gondolo, J. Edsjö, L. Bergström, P. Ullio and E. A. Baltz, arXiv:astro-ph/0012234 and http://www.physto.se/\(\tilde e\)dsjo/darksusy/.

    Google Scholar 

  27. A. Djouadi, J. L. Kneur and G. Moultaka, arXiv:hep-ph/0211331.

    Google Scholar 

  28. S. Heinemeyer, W. Hollik and G. Weiglein, arXiv:hep-ph/0002213.

    Google Scholar 

  29. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Comp. Phys. Commun. 149 (2002) 103 [arXiv:hep-ph/0112278] and arXiv:hep-ph/0210327 and http://wwwlap.in2p3.fr/lapth/micromegas.

    Article  Google Scholar 

  30. E. Kolb, M.S. Turner, The Early Universe, Frontiers in Physics, Addison Wesley, 1990.

    Google Scholar 

  31. Reviews and original references can be found in: W. de Boer, Prog. Part. Nucl. Phys. 33 (1994) 201 [arXiv:hep-ph/9402266]; H.E. Haber, Lectures given at Theoretical Advanced Study Institute, University of Colorado, June 1992, Preprint Univ. of Sante Cruz, SCIPP 92/33; see also SCIPP 93/22; Perspectives on Higgs Physics, G. Kane (Ed.), World Scientific, Singapore (1993); A.B. Lahanus and D.V. Nanopoulos, Phys. Rep. 145 (1987) 1; H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75; M.F. Sohnius, Phys. Rep. 128 (1985) 39; H.P. Nilles, Phys. Rep. 110 (1984) 1; P. Fayet and S. Ferrara, Phys. Rep. 32 (1977) 249.

    Article  Google Scholar 

  32. W. de Boer and C. Sander, arXiv:hep-ph/0307049 and references therein.

    Google Scholar 

  33. H. Goldberg, Phys. Rev. lett. 50 (1983) 1419.

    Article  Google Scholar 

  34. A. Pukhov et al., arXiv:hep-ph/9908288.

    Google Scholar 

  35. F. Stoehr, S. D. White, V. Springel, G. Tormen and N. Yoshida, arXiv:astro-ph/0307026

    Google Scholar 

  36. V. Berezinski, V. Dokuchaev, Y. Eroshenko, arXiv:astro-ph/0301551.

    Google Scholar 

  37. K. Griest and D. Seckel, Phys. Rev. D43 (1991) 3191

    Google Scholar 

  38. L.J. Gleeson and W.I. Axford, ApJ 149 (1967) L115; ApJ 154 (1968) 1011.

    Article  Google Scholar 

  39. D. Casadei and V. Bindi, astro-ph/0302307.

    Google Scholar 

  40. M. Simon, A. Molnar and S. Rösler, ApJ 499 (1998) 250

    Article  Google Scholar 

  41. J.F. Navarro, C.S. Frank and S.D. White, ApJ 490 (1997) 493 [arXiv:astro-ph/9611107].

    Article  Google Scholar 

  42. S. Ghigna, B. Moore, F. Governato, G. Lake, T. Quinn and J. Stadel, arXiv:astro-ph/9910166.

    Google Scholar 

  43. D. Zhao, H. Mo, Y. Jing and G. Boerner, Mon. Not. Roy. Astron. Soc. 339 (2003) 12 [arXiv:astro-ph/0204108].

    Article  Google Scholar 

  44. A. W. Strong, I. V. Moskalenko and O. Reimer, arXiv:astro-ph/0306345.

    Google Scholar 

  45. J. Alcaraz et al. [AMS Collaboration], Phys. Lett. B 484 (2000) 10 [Erratumibid. B 495 (2000) 440].

    Article  Google Scholar 

  46. S. W. Barwick et al. [HEAT Collaboration], Astrophys. J. 482 (1997) L191 [arXiv:astro-ph/9703192]. M. A. DuVernois et al., Astrophys. J. 559 (2001) 296.

    Article  Google Scholar 

  47. BESS Coll. S. Orito et al., Phys. Rev. Lett 84 (2000) 1078. T. Maeno et al., Astrop. Phys. 16 (2001) 121; astro-ph/0010381.

    Google Scholar 

  48. V. Bonvicini et al., [PAMELA Collaboration], Nucl. Instrum. Meth. A 461 (2001) 262.

    Google Scholar 

  49. R. Battiston, The Alpha Magnetic Spectrometer (AMS), Nucl. Instr. and Meth. A409 (1998) 458. The AMS Coll., B. Alpat, The Alpha Magnetic Spectrometer (AMS) on the International Space Station, Nucl. Instr. and Meth. A461 (2001) 272. The AMS Coll., J. Alcaraz et al., The Alpha Magnetic Spectrometer (AMS), Nucl. Instr. and Meth. A478 (2002) 119.

    Google Scholar 

  50. A. Morselli, A. Lionetto, A. Cesarini, F. Fucito and P. Ullio [GLAST Collaboration], Nucl. Phys. Proc. Suppl. 113 (2002) 213 [arXiv:astro-ph/0211327].

    Article  Google Scholar 

  51. J. Ahrens et al. [AMANDA Collaboration], Phys. Rev. D 66 (2002) 032006 [arXiv:astro-ph/0202370]; F. Blanc et al. [ANTARES Collaboration], Presented by L. Thompson on behalf of the ANTARES Collaboration, to appear in the proceedings of 28th International Cosmic Ray Conferences (ICRC 2003), Tsukuba, Japan, 31 Jul–7 Aug 2003; S. E. Tzamarias [NESTOR. Collaboration], Nucl. Instrum. Meth. A 502 (2003) 150. For a recent review, see F. Halzen and D. Cooper, Rept. Prog. Phys. 65 (2002) 1025 [arXiv:astro-ph/0204527].

    Article  Google Scholar 

  52. L. Baudis, Workshop on Cosmology and Particle Physics, CAPP 2003, CERN, June, 2003.

    Google Scholar 

  53. R. Bernabei et al., Riv. Nuovo Cim. 26 (2003) 1 [arXiv:astro-ph/0307403].

    Google Scholar 

  54. O. Martineau et al. [EDELWEISS Collaboration], arXiv:astro-ph/0310657. R. W. Schnee et al., Nucl. Phys. Proc. Suppl. 124 (2003) 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

de Boer, W. (2005). Is Dark Matter Supersymmetric?. In: Kazakov, D., Smadja, G. (eds) Particle Physics and Cosmology: The Interface. NATO Science Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3161-0_13

Download citation

Publish with us

Policies and ethics