Advertisement

Suppression of Oxidative Stress-Induced Apoptosis of Neuronal Cells by Electrolyzed-Reduced Water

  • T. Kashiwagi
  • T. Hamasaki
  • S. Kabayama
  • M. Takaki
  • K. Teruya
  • Y. Katakura
  • K. Otubo
  • S. Morisawa
  • S. Shirahata
Conference paper
Part of the ESACT Proceedings book series (ESACT, volume 2)

Abstract

We have proposed an active hydrogen reduced water theory that active hydrogen produced by electrolysis of water is stabilized in the form of hydrogenated metal nanocolloids in electrolyzed reduced water (ERW) and scavenges intracellular reactive oxygen species (ROS). Because various brain diseases are caused by oxygen stress, we examined the effect of ERW on oxidative stress-induced apoptois of neuronal cells. ERW suppressed the H2O2-induced cell death of mouse neuroblastoma N1E115 cells, rat pheochromocytoma PC12 cells and mouse neuronal stem SFME cells. ERW lowered the intracellular ROS level of N1E115 cells, suppressing the H2O2-induced decrease of mitochondrial membrane potential and intracellular ATP level, which are markers of apoptosis. These results suggested the effectiveness of ERW for prevention of various brain diseases caused by oxidative stress.

Keywords

1E115 Cell Intracellular Reactive Oxygen Species Level N1E115 Cell Mouse Neuroblastoma N1E11 Mouse Neuroblastoma N1E11 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. 1.
    Miranda S. et al. (2000) Prog Neurobiol, 62, 633–684.CrossRefPubMedGoogle Scholar
  2. 2.
    Koutsilieri E. et al. (2002) J Neurol, 249,Suppl 2: 111–115Google Scholar
  3. 3.
    Browne SE. et al. (1999) Brain Pathol. 9, 147–163.PubMedCrossRefGoogle Scholar
  4. 4.
    Love S. (1999) Brain Pathol, 9, 119–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Coyle JT. et al. (1993) Science, 262, 689–695.PubMedGoogle Scholar
  6. Shirahata S. et al. (1997) Biochem Biophys Res Commun, 234, 269–274.CrossRefPubMedGoogle Scholar
  7. Oda M. et al. (1999) In: Animal Cell Technology: Products from Cells, Cells as Products, (ed. by A. Bernard et al.), Kluwer Academic Publishers, the Netherlands, pp. 425–427.Google Scholar
  8. 8.
    Kanemura Y. et al. (2002) J Neurosci Res. 69(6), 869–79.CrossRefPubMedGoogle Scholar
  9. 9.
    Bass DA. et al. (1983) J Immunol. 130(4), 1910–7PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T. Kashiwagi
    • 1
  • T. Hamasaki
    • 1
  • S. Kabayama
    • 2
  • M. Takaki
    • 1
  • K. Teruya
    • 1
  • Y. Katakura
    • 1
  • K. Otubo
    • 2
  • S. Morisawa
    • 2
  • S. Shirahata
    • 1
  1. 1.Department of Genetic Resources Technology, Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Nihon Trim Co. LTD.OsakaJapan

Personalised recommendations