Skip to main content

Sum Rules and Energy Scales in BiSrCaCuO

  • 810 Accesses

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

From very high accuracy reflectivity spectra, we have derived the optical conductivity and estimated the spectral weight up to various cut-off frequencies in underdoped Bi2Sr2CaCu2O8+δ (Bi-2212). We show that, when evaluating the optical spectral weight over the full conduction band (1 eV), the kinetic energy decreases in the superconducting state, unlike in conventional BCS superconductors. As a consequence, the Ferrell-Glover-Tinkham sum rule is not satisfied up to this energy scale. This stands as a very unconventional behavior, contrasted with the overdoped Bi-2212 sample.

Keywords

  • High Tc superconductors
  • infrared conductivity
  • spectral weight

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chakravarty, H.Y. Kee and E. Abrahams, Phys. Rev. B 82, 2366 (1999).

    CAS  Google Scholar 

  2. R. Haslinger and A. Chubukov, Phys. Rev. B 67, 140504 (2003).

    CrossRef  ADS  Google Scholar 

  3. D.N. Basov et al., Phys. Rev. B 63, 134514 (2003) and references therein.

    CrossRef  ADS  Google Scholar 

  4. M.R. Norman and C. Pepin, Rep. Prog. Phys. 66, 1547 (2003).

    CrossRef  ADS  CAS  Google Scholar 

  5. R.A. Ferrell and R.E. Glover, Phys. Rev. 109, 1398 (1958).

    CrossRef  ADS  CAS  Google Scholar 

  6. M. Tinkham and R.A. Ferrell, Phys. Rev. Lett. 2, 331 (1959).

    CrossRef  ADS  Google Scholar 

  7. C. Renner et al., Phys. Rev. Lett 80, 149 (1998).

    CrossRef  ADS  CAS  Google Scholar 

  8. H. Ding et al, Phys. Rev. 54, R9678 (1996).

    CrossRef  ADS  CAS  Google Scholar 

  9. D.N. Basov et al., Science 283, 49 (1999).

    CrossRef  ADS  CAS  Google Scholar 

  10. H.J.A. Molegraaf et al., Science 295, 2239

    Google Scholar 

  11. A.F. Santander-Syro et al., Europhys. Lett 62, 568 (2003).

    CrossRef  ADS  CAS  Google Scholar 

  12. A.F. Santander-Syro et al., to be published.

    Google Scholar 

  13. A. Santander-Syro at al., Phys. Rev. Lett. 88, 097005 (2002).

    CrossRef  ADS  CAS  Google Scholar 

  14. http://www.espci.fr/recherche/labos/lps/thesis.htm and A. Santander-Syro at al., to be published.

    Google Scholar 

  15. M. Norman, private communication

    Google Scholar 

  16. D. van der Marel et al Chapter in “Concepts in electron correlation”, Editors A. Hewson and V. Zlatic (KLUWER, 2003) and Condmat/0302169

    Google Scholar 

  17. C.C. Homes et al, Phys. Rev. B 69, 0024514 (2004)

    CrossRef  ADS  Google Scholar 

  18. M.R. Norman and C. Pepin, Phys. Rev. B 66, 100506(R) (2002). 66, 100506(R) (2002).

    CrossRef  ADS  Google Scholar 

  19. T. Eckl et al, Phys. Rev. B 68, 014505 (2003); T.A. Maier et al Phys. Rev. Lett. 92, 027005) (2004).

    CrossRef  ADS  Google Scholar 

  20. J. Hirsch and F. Marsiglio, Phys. Rev. B 62, 15131 (2000) and references therein; L. Benfatto et al, Condmat/0305276; T. Stanescu and P. Phillips, Condmat/0301254;J. Ashkenazi, Coondmat/0308153; J.P. Carbotte and E. Schachinger, Condmat/0404192.

    CrossRef  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santander-Syro, A., Lobo, R., Bontemps, N. (2005). Sum Rules and Energy Scales in BiSrCaCuO. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_4

Download citation

Publish with us

Policies and ethics