Skip to main content

Stripe-Like Inhomogeneities, Coherence, and the Physics of the High tc Cuprates

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

The carriers in the high-Tc cuprates are found to be polaron-like “stripons” carrying charge and located in stripe-like inhomogeneities, “quasi-electrons” carrying charge and spin, and “svivons” carrying spin and some lattice distortion. The anomalous spectroscopic and transport properties of the cuprates are understood. The stripe-like inhomogeneities result from the Bose condensation of the svivon field, and the speed of their dynamics is determined by the width of the double-svivon neutron-resonance peak. The connection of this peak to the peak-dip-hump gap structure observed below Tc emerges naturally. Pairing results from transitions between pair states of stripons and quasi-electrons through the exchange of svivons. The pairing symmetry is of the dx2y2 type; however, sign reversal through the charged stripes results in features not characteristic of this symmetry. The phase diagram is determined by pairing and coherence lines within the regime of a Mott transition. Coherence without pairing results in a Fermi-liquid state, and incoherent pairing results in the pseudogap state where localized electron and electron pair states exist within the Hubbard gap. A metal-insulator-transition quantum critical point occurs between these two states at T = 0 when the superconducting state is suppressed. An intrinsic heterogeneity is expected of superconducting and pseudogap nanoscale regions.

Keywords

  • High-Tc
  • cuprates
  • stripes
  • inhomogeneities
  • pairing symmetry
  • Mott transition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. E. Barnes, Adv. Phys. 30, 801 (1980).

    CrossRef  ADS  Google Scholar 

  2. J. Ashkenazi, J. Phys. Chem. Solids, 65, 1461 (2004); cond-mat/0308153.

    CrossRef  ADS  CAS  Google Scholar 

  3. J. Ashkenazi, J. Phys. Chem. Solids, 63, 2277 (2002); cond-mat/0108383.

    CrossRef  Google Scholar 

  4. J. Ashkenazi, J. Supercond., 719 (1994).

    Google Scholar 

  5. J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996); Phys. Rev. Lett. 78, 338 (1997).

    CrossRef  ADS  CAS  Google Scholar 

  6. J. Ashkenazi, High-Temperature Superconductivity, edited by S. E. Barnes, J. Ashkenazi, J. L. Cohn, and F. Zuo (AIP Conference Proceedings 483, 1999), p. 12; cond-mat/9905172.

    Google Scholar 

  7. E. Pavarini, et al., Phys. Rev. Lett. 87, 047003 (2001).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  8. T. Yoshida, et al., Phys. Rev. B 63, 220501 (2001).

    CrossRef  ADS  CAS  Google Scholar 

  9. A. Lanzara, et al. Nature 412, 510 (2001).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  10. P. D. Johnson, et al., Phys. Rev. Lett. 87, 177007 (2001).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  11. N. P. Armitage, et al., Phys. Rev. B 68, 064517 (2003).

    CrossRef  ADS  CAS  Google Scholar 

  12. X. J. Zhou, et al, Nature 423, 398 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  13. A. D. Gromko, et al., Phys. Rev. B 68, 174520(2003)

    CrossRef  ADS  CAS  Google Scholar 

  14. T. Sato, et al., Phys. Rev. Lett. 91, 157003 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  15. G.-H. Gweon, et al., Nature 430, 187 (2004); A. Lanzara, et al., these proceedings.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  16. X. J. Zhou, et al., Phys. Rev. Lett. 92, 187001 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  17. T. Yoshida, et al., Phys. Rev. Lett. 91, 027001 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  18. Ph. Bourges, et al. Science 288, 1234 (2000); cond-mat/0211227; Y. Sidis, et al., condmat/0401328.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  19. D. Reznik, et al., cond-mat/0307591.

    Google Scholar 

  20. J. M. Tranquada, et al., Phys. Rev. B 69, 174507 (2004).

    CrossRef  ADS  CAS  Google Scholar 

  21. S. Wakimoto, et al., Phys. Rev. Lett. 92, 217004 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  22. N. B. Christensen, et al., cond-mat/0403439.

    Google Scholar 

  23. J. M. Tranquada, et al., Nature 429, 534 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  24. S. M. Hayden, et al., Nature 429, 531 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  25. R. J. McQueeney, et al., Phys. Rev. Lett. 87, 077001 (2001); J.-H.Cung, et al., Phys. Rev. B67, 014517 (2003); L. Pintschoius, et al., cond-mat/0308357; T. Cuk, et al., cond-mat/0403521; T. Egami, these proceedings, views the lattice effect as the primary one; M. V. Eremin and I. Eremin, these proceedings, consider spin-lattice coupling.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  26. Ph. Bourges, et al., Phys. Rev. B 56, R12439 (1997); S. Pailhes, et al., Phys. Rev. Lett. 91, 23700 (2003); cond-mat/0403609.

    CrossRef  Google Scholar 

  27. B. Fisher, et al., J. Supercond. 1, 53 (1988); J. Genossar, et al., Physica C 157, 320 (1989).

    CrossRef  ADS  CAS  Google Scholar 

  28. S. Tanaka, et al., Phys. Soc. Japan 61, 1271 (1992); K. Matsuura, et al., Phys. Rev. B 46, 11923 (1992); S. D. Obertelli, et al., ibid., p. 14928; C. K. Subramaniam. et al., Physica C 203, 298 (1992).

    CrossRef  ADS  CAS  Google Scholar 

  29. Y. Kubo and T. Manako. Physica C 197, 378 (1992).

    CrossRef  ADS  CAS  Google Scholar 

  30. H. Y. Hwang, et al., Physica C 72, 2636 (1994).

    CAS  Google Scholar 

  31. H. Takagi, et al., Phys. Rev. Lett. 69, 2975 (1992).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  32. J. Takeda, et al., Physica C 231, 293 (1994); X.-Q. Xu. et al., Phys. Rev. B 45, 7356 (1992); Wu Jiang, et al., Phys. Rev. Lett. 73, 1291 (1994).

    CrossRef  ADS  CAS  Google Scholar 

  33. G. V. M. Williams, et al., Phys. Rev. B 65, 224520 (2002).

    CrossRef  ADS  CAS  Google Scholar 

  34. N. P. Armitage, et al., Phys. Rev. Lett. 88, 257001 (2002).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  35. M. Gruninger, et al., Phys. Rev. Lett. 84, 1575 (2000); D. N. Basov, Phys. Rev. B 63, 134514 (2001); A. B. Kuzmenko, et al., Phys. Rev. Lett. 91, 037004 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  36. B. V. Fine, cond-mat/0308428; these proceedings.

    Google Scholar 

  37. I. Tifrea, and C. P. Moca, Eur. Phys. J. B 35, 33 (2003).

    CrossRef  ADS  CAS  Google Scholar 

  38. V. J. Emery, and S. A. Kivelson, Nature 374, 4347 (1995); Phys. Rev. Lett. 74, 3253 (1995); cond-mat/9710059.

    CrossRef  Google Scholar 

  39. Y. I. Uemura, et al., Phys. Rev. Lett. 62, 2317 (1989).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  40. Z. M. Yusof, et al., Phys. Rev. Lett. 88, 167006 (2002); A. Kaminski, et al., Phys. Rev. Lett. 90, 207003 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  41. N. E. Hussey, et al., Nature 425, 814 (2004); these proceedings.

    CrossRef  ADS  CAS  Google Scholar 

  42. H. J. A. Molegraaf, et al., Science 295, 2239 (2002); A. F. Santander-Syro, et al., Europhys. Lett. 62, 568 (2003); cond-mat/0405264; C, C. Homes, et al., Phys. Rev.B69, 024514(2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  43. M. R. Norman, and C. Pepin, Phys. Rev. B 66, 100506 (2002); cond-mat/0302347.

    CrossRef  ADS  CAS  Google Scholar 

  44. M. Abrecht, et al., Phys. Rev. Lett. 91, 057002 (2003); D. Pavuna, et al., these proceedings.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  45. G. S. Boebinger, et al., Phys. Rev. Lett. 77, 5417 (1996).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  46. J. L. Tallon, and J. W. Loram, Physica C 349, 53 (2001); C. Panagopoulos, et al., Phys. Rev. B 69, 144510 (2004); S. H. Naqib, et al., cond-mat/0312443.

    CrossRef  ADS  CAS  Google Scholar 

  47. E.g.: David Pines, these proceedings; C. M. Varma, these proceedings.

    Google Scholar 

  48. K. McElroy, et al., Nature 422, 592 (2003); cond-mat/0404005.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  49. M. S. Oaofsky, et al., Phys. Rev. B 66, 020502 (2002); these proceedings.

    CrossRef  ADS  CAS  Google Scholar 

  50. H. Won, and K. Maki, Phys. Rev. B Phys. Rev. B 49, 1397 (1994).

    CrossRef  ADS  CAS  Google Scholar 

  51. Ch. Renner, et al., Phys. Rev. Lett. 80, 149 (1998); M. Suzuki, and T. Watanabe, Phys. Rev. Lett. 85, 4787 (2000).

    CrossRef  ADS  CAS  Google Scholar 

  52. M. Kugler, et al., Phys. Rev. Lett. 86, 4911 (2001); A. Yurgens, et al., Phys. Rev. Lett. 90, 147005 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  53. J. F. Zasadzinski, et al., Phys. Rev. Lett. 87, 067005 (2001); M. Oda, et al., these proceedings.

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  54. H. Matsui, et al., Phys. Rev. Lett. 90, 217002 (2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  55. S. V. Borisenko, et al., Phys. Rev. Lett. 90, 207001 (2003); T. K. Kim, et al., Phys. Rev. Lett. 91, 177002(2003).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  56. D. L. Feng, et al., Phys. Rev. Lett. 86, 5550 (2001).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  57. C. Janowitz, et al., Europhys. Lett. 60, 615 (2002); cond-mat/0107089.

    CrossRef  ADS  CAS  Google Scholar 

  58. J. Hwang, et al., Nature 427, 714 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  59. T. Cuk, et al., cond-mat/0403743.

    Google Scholar 

  60. Ch. Niedermayer, et al., Phys. Rev. Lett. 71, 1764 (1993).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  61. D. L. Feng, et al., Science 289, 277 (2000); H. Ding, et al., Phys. Rev. Lett. 87, 227001 (2001); R. H. He, et al., Phys. Rev. B 69, 220502 (2004).

    CrossRef  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashkenazi, J. (2005). Stripe-Like Inhomogeneities, Coherence, and the Physics of the High tc Cuprates. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_29

Download citation

Publish with us

Policies and ethics