Skip to main content

Dynamical Spin Susceptibility in Singlet-Correlated Band Model

  • 803 Accesses

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

Starting from the three-band p — d Hubbard Hamiltonian we derive the effective single-correlated model Hamiltonian including electron-phonon interaction of quasiparticles with optical phonons and strong electron correlations. Within an effective Hamiltonian we analyze their influence on the dynamical spin susceptibility in layered cuprates. We find an isotope effect on resonance peak in the magnetic spin susceptibility, Im ϰ(q, ω), seen by inelastic neutron scattering. It results from both the electron-phonon coupling and the electronic correlation effects taken into account beyond random phase approximation(RPA) scheme.

Keywords

  • High-Tc cuprates
  • spin susceptibility
  • electron-phonon interaction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chubukov A.V., Pines D., and Schmalian J., (2003). “A Spin Fluctuation Model for d-wave Superconductivity” in The Physics of Conventional and Unconventional Superconductors eds. by Bennemann K.H. and Ketterson J.B., Vol. 1 (Springer-Verlag).

    Google Scholar 

  2. He H., Bourges P., Sidis Y., Ulrich C., Regnault L.P., Pailhes S., Berzigiarova N.S., Kolesnikov N.N., and Keimer B., (2002). Magnetic Resonant Mode in the Single-Layer High-Temperature Superconductor Tl2Ba2CuO6+δ. Science 295:1045–1047.

    CrossRef  ADS  CAS  Google Scholar 

  3. See for review Bourges P., (1998). “From Magnons to the Resonance Peak: Spin Dynamics in High-Tc Superconducting Cuprates by Inelastic Neutron Scattering” in The Gap Symmetry and Fluctuations in High Temperature Superconductors edited by Bok J., Deutscher G., Pavuna D., and Wolf S.A. (Plenum Press), pp.349–371.

    Google Scholar 

  4. Khasanov R., Eshchenko D.G., Luetkens H., Morenzoni E., Prokscha T., Suter A., Garifianov N., Mali M., Roos J., Conder K., and Keller H., (2003). The oxygen-isotope effect on the in-plane penetration depth in underdoped Y1−x PrxBa2Cu3O7−δ as revealed by muon-spin rotation. J. Phys.: Condens. Matter 15:L17–L24.

    CAS  Google Scholar 

  5. McQueeney R.J., Sarrao J.L., Pagliuso P.G., Stephens P.W., and Osborn R., (2001). Mixed Lattice and Electronic States in High-Temperature Superconductors. Phys. Rev. Lett., 87:077001.

    CrossRef  ADS  CAS  Google Scholar 

  6. Pintschovius L., Endoh Y., Reznik D., Hiraka H., Tranquada J.M., Reichardt W., Uchiyama H., Masui T., Tajima S., (2003). Evidence for Dynamic Charge Stripes in the Phonons of Optimally Doped YBCO. cond-mat/0308357 (unpublished).

    Google Scholar 

  7. For review of earlier results see Kulic M., (2000). Interplay of electron-phonon interaction and strong correlations: the possible way to high-temperature superconductivity. Phys. Rep. 338:1–264.

    CrossRef  ADS  CAS  Google Scholar 

  8. Lanzara A., private communication.

    Google Scholar 

  9. Schrieffer J.R., and Wolf P.A., (1966). Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149:491–492.

    CrossRef  ADS  CAS  Google Scholar 

  10. Kugel K.I., and Khomskii D.L., (1980). Polaron effects and exchange interaction in magnetic insulators with Jahn-Teller ions. Zh. Eksp. Teor. Fiz. 79:987–1005 [Sov. Phys. JETP 52:501–515].

    CAS  Google Scholar 

  11. Eremin I., Kamaev O., and Eremin M.V., (2004). Possible isotope effect on the resonance peak formation in high-Tc cupraes. Phys. Rev. B 69:094517.

    CrossRef  ADS  Google Scholar 

  12. Zhang F.C., and Rice T.M., (1988). Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37:3759–3761.

    CrossRef  ADS  CAS  Google Scholar 

  13. Zhao G.-M., Hunt M.B., Keller H., and Mueller K.A., (1997). Evidence for polaronic supercarriers in the copper oxide superconductors La2−x SrxCuO4. Nature 385:236–239.

    CrossRef  ADS  CAS  Google Scholar 

  14. Zhao G.-M., Keller H., and Conder K., (2001). Unconventional isotope effects in the hightemperature cuprate superconductors. J. Phys.: Condens. Matter 13:R569–R587.

    CAS  Google Scholar 

  15. Hubbard J., and Jain K.P., (1968). Generalized spin susceptibility in the correlated narrowenergy-band model. J. Phys. C (Proc. Phys. Soc.), Ser. 21:1650–1657.

    CrossRef  ADS  Google Scholar 

  16. Plakida N.M., Hayn R., and Richard J.L., (1995). Two-band singlet-hole model for the copper oxide plane. Phys. Rev. B 51:16599–16607.

    CrossRef  ADS  CAS  Google Scholar 

  17. Zavidonov A.Yu., and Brinkmann D., (1998). Evolution of antiferromagnetic short-range order with doping in high-Tc superconductors. Phys. Rev. B 58:12486–12494.

    CrossRef  ADS  CAS  Google Scholar 

  18. Eremin M., Eremin I., and Varlamov S., (2001). Dynamical charge susceptibility in layered cuprates: Beyond the conventional random-phase-approximation scheme. Phys. Rev. B 64:214512. Eremin I., (1997), Physica (Amsterdam) B, 234–236, 792.

    CrossRef  ADS  Google Scholar 

  19. Onufrieva F., and Pfeuty P., (2002). Spin dynamics of a two-dimensional metal in a superconducting state: Application to the high-Tc cuprates Phys. Rev. B 65:054515; Manske D., Eremin I., and Bennemann K.H., (2001). Analysis of the resonance peak and magnetic coherence seen in inelastic neutron scattering of cuprate superconductors: A consistent picture with tunneling and conductivity data. Phys. Rev. B 63:054517.

    CrossRef  ADS  Google Scholar 

  20. Norman M.R. (2001). Magnetic collective mode dispersion in high-temperature superconductors. Phys. Rev. B 63:092509.

    CrossRef  ADS  Google Scholar 

  21. Arai M., Nishijima T., Endoh Y., Egami T., Tajima S., Tomimoto T., Shiohara Y., Takahashi M., Garrett A., and Bennington S.M., (1999). Incommensurate Spin Dynamics of Underdoped Superconductor YBa2Cu3O6.7. Phys. Rev. Lett. 83:608–612.

    CrossRef  ADS  CAS  Google Scholar 

  22. Reznik D., Bourges P., Pintschovius L., Endoh Y., Sidis Y., Shiokara Y., and Tajima S., (2003). Dispersion of Magnetic Excitations in Superconducting Optimally Doped YBa2Cu3O6.95. cond-mat/0307591 (unpublished).

    Google Scholar 

  23. Eremin M.V., Eremin I.M., Larionov I.A., and Terzi A. V., (2002). Polaron Effects on Superexchange Interaction: Isotope Shifts of TN, Tc, and T* in Layered Copper Oxides. Pis’ma Zh. Eksp. Teor. Fiz. 75:467–470 [JETP Lett. 75:395–398].

    Google Scholar 

  24. Zhao G.-M., Singh K.K., and Morris D.E., (1994). Oxygen isotope effect on Neel temperature in various antiferromagnetic cuprates. Phys. Rev. B 50:4112–4117.

    CrossRef  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremin, M., Eremin, I. (2005). Dynamical Spin Susceptibility in Singlet-Correlated Band Model. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_28

Download citation

Publish with us

Policies and ethics