Skip to main content

Theory for Key Experiments in Cuprate Superconductors

Fingerprints of the Pairing Interaction: Resonance Peak and Kink

  • 797 Accesses

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

We argue that a Scalapino-Schrieffer-Wilkins analysis of the elementary excitations is possible in high-Tc cuprates. We demonstrate this by considering the resonance peak in inelastic neutron scattering (INS) experiments and the kink in angle-resolved photoemission (ARPES) data. Both properties contain characteristic features of the superconducting gap function Δ(k, ω) that reflect the pairing interaction. We can qualitatively explain the experiments by using a generalized Eliashberg theory for the one-band Hubbard model based on spin-fluctuationmediated Cooper-pairing in which Δ(k, ω) is calculated self-consistently. This gives strong evidence for Cooper-pairing due to spin excitations in the high-Tc cuprates.

Keywords

  • high-Tc superconductivity
  • spin-fluctuation mechanism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).

    CrossRef  ADS  CAS  Google Scholar 

  2. C. C. Tsuei and J. R. Kirtley, in The physics of superconductors, Eds.: K. H. Bennemann and J. B. Ketterson, Vol. 1, chapter 9, Springer (Heidelberg), 2003.

    Google Scholar 

  3. J. Zasadzinski, in The physics of superconductors, Eds.: K. H. Bennemann and J. B. Ketterson, Vol. 1, chapter 8, Springer (Heidelberg), 2003.

    Google Scholar 

  4. D. Einzel and R. Hackl, J. Raman Spektroscopy 27, 307 (1996).

    CrossRef  ADS  CAS  Google Scholar 

  5. A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).

    CrossRef  ADS  CAS  Google Scholar 

  6. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    CrossRef  ADS  CAS  Google Scholar 

  7. D. Manske, I. Eremin, and K. H. Bennemann, in The physics of superconductors, Eds.: K. H. Bennemann and J. B. Ketterson, Vol. 2, chapter 9, Springer (Heidelberg), 2004.

    Google Scholar 

  8. T. Dahm, D. Manske, and L. Tewordt, Phys. Rev. B 58, 12454 (1998).

    CrossRef  ADS  CAS  Google Scholar 

  9. M. Eschrig and M. R. Norman, Phys. Rev. Lett. 85, 3261 (2000).

    CrossRef  ADS  CAS  Google Scholar 

  10. A. V. Chubukov, D. Pines, and J. Schmalian, in The physics of superconductors, Eds.: K. H. Bennemann and J. B. Ketterson, Vol. 1, chapter 7, Springer (Heidelberg), 2003.

    Google Scholar 

  11. D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 67, 134520 (2003).

    CrossRef  ADS  Google Scholar 

  12. H. F. Fong et al., Phys. Rev. B 61, 14773 (2000).

    CrossRef  ADS  CAS  Google Scholar 

  13. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); N. E. Bickers and D. J. Scalapino, Annals Phys. 193, 206 (1989); P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1995).

    CrossRef  ADS  CAS  Google Scholar 

  14. T. Dahm and L. Tewordt, Phys. Rev. Lett. 74, 793 (1995).

    CrossRef  ADS  CAS  Google Scholar 

  15. M. Langer, J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. Lett. 75, 4508(1995).

    CrossRef  ADS  CAS  Google Scholar 

  16. St. Lenck, J.P. Carbotte, and R. C. Dynes, Phys. Rev. B 50, 10149 (1994).

    CrossRef  Google Scholar 

  17. N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).

    CrossRef  ADS  CAS  Google Scholar 

  18. Y. Nambu, Phys. Rev. 117, 648 (1960).

    CrossRef  ADS  MathSciNet  Google Scholar 

  19. J. R. Schrieffer, Theory of Superconductivity, Addison-Wesley (Redwood City, 1964).

    Google Scholar 

  20. D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 63, 054517 (2001).

    CrossRef  ADS  Google Scholar 

  21. P. Bourges et al., Science 288, 1234 (2000).

    CrossRef  ADS  CAS  Google Scholar 

  22. J. Tranquada et al., cond-mat/0310231 (unpublished).

    Google Scholar 

  23. A. D. Gromko et al., Phys. Rev. B 68, 174520 (2003).

    CrossRef  ADS  Google Scholar 

  24. S. V. Borisenko et al., Phys. Rev. Lett. 90, 207001 (2003); T. K. Kim et al., Phys. Rev. Lett. 91, 167002 (2003).

    CrossRef  ADS  CAS  Google Scholar 

  25. The possible reason why for electron-doped cuprates neither a kink nor a resonance peak is observed has been discussed in I. Eremin, and K.H. Bennemann, Phys. Rev. B 67, 134520 (2003). Ref. [11].

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manske, D., Eremin, I., Bennemann, K. (2005). Theory for Key Experiments in Cuprate Superconductors. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_27

Download citation

Publish with us

Policies and ethics