Abstract
It has long been established that disorder has profound effects on unconventional superconductors and it has been suggested repeatedly that observation and analysis of these disorder effects can help to identify the order parameter symmetry. In much of the relevant literature, including very sophisticated calculations of interference and weak localization effects, the disorder is represented by δ-function scatterers of arbitrary strength. One obvious shortcoming of this approximation is that resonant scattering resulting from the wavelength of the scattered quasiparticle matching the spatial extent of the defect is not included. We find that the mitigation of the Tc-reduction, expected when d-wave scattering is included, is very sensitive to the average strength of the scattering potential and is most effective for weak scatterers. Disorder with finite range not only has drastic effects on the predicted density of states at low energies, relevant for transport properties, but affects the spectral function at all energies up to the order parameter amplitude. The gap structure, which does not appear to be of the simplest d-wave form, should show a defect-dependent variation with temperature, which could be detected in ARPES experiments.
Keywords
- Unconventional superconductivity
- disorder
- non-s-wave scattering
- ARPES
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abrikosov, A. A. and Gor’kov, L. P. (1961). Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP, 12:1243.
Atkinson, W. A., Hirschfeld, P. J., MacDonald, A. H., and Ziegler, K. (2000). Details of disorder matter in 2d d-wave superconductors. Phys. Rev. Lett., 85:3926.
Borisenko, S. V., Kordyuk, A. A., Kim, T. K., Legner, S., Nenkov, K. A., Knupfer, M., Golden, M. S., Fink, J., Berger, H., and Follath, R. (2002). Superconducting gap in the presence of bilayer splitting in underdoped (Pb,Bi)2Sr2CaCu208+δ. Phys. Rev. B, 66:140509.
Dahm, T., Erdmenger, J., Scharnberg, K., and Rieck, C. T. (1993). Superconducting states from spin-fluctuation mechanisms. Phys. Rev. B, 48:3896.
Haas, S., Balatsky, A. V., Sigrist, M., and Rice, T. M. (1997). Extended gapless regions in disordered dx2−y2 wave superconductors. Phys. Rev. B, 56:5108.
Harań, G. and Nagi, A. D. S. (1996). Role of anisotropic impurity scattering in anisotropic superconductors. Phys. Rev. B, 54:15463.
Hensen, S., Müller, G., Rieck, C. T., and Scharnberg, K. (1997). In-plane surface impedance of epitaxial YBa2Cu3O7−δ films: Comparison of experimental data taken at 87 GHz with d-and s-wave models of superconductivity. Phys. Rev. B, 56:6237.
Kulić, M. L. and Dolgov, O. V. (1999). Anisotropic impurities in anisotropic superconductors. Phys. Rev. B, 60:13062.
Monthoux, P. and Pines, D. (1993). YBa2Cu3O7: A nearly antiferromagnetic Fermi liquid. Phys. Rev. B, 47:6069.
Rullier-Albenque, F., Alloul, H., and Tourbot, R. (2003). Influence of pair breaking and phase fluctuations on disordered high tc cuprate superconductors. Phy. Rev. Lett., 91:047001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Rieck, C.T., Scharnberg, K., Scheffler, S. (2005). Effects of Disorder with Finite Range on the Properties of D-Wave Superconductors. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_25
Download citation
DOI: https://doi.org/10.1007/1-4020-3085-1_25
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3083-3
Online ISBN: 978-1-4020-3085-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)
