Skip to main content

High-Temperature Superconductivity of Oxides

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

Evidence is presented that high-temperature superconductivity does not necessarily originate in the cuprate-planes. In the cuprates such as YBa2Cu3O7, i is argued that the superconductivity resides in the BaO layers. This superconductivity is s-wave, not d-wave, in the bulk. The trio of ruthenate compounds, Cu-doped Sr2YRuO6, GdSr2Cu2RuO8, and Gd2−zCezSr2Cu2RuO10 all super conduct in their SrO layers, which is why they have almost the same ∼45 K onset temperatures for superconductivity. Ba2GdRuO6, whether doped or not, does not superconduct, because the Gd breaks Cooper-like pairs. Bi2Sr2CaCu2O8 YBa2Cu3O7, Nd2−zCezCuO4 homologues, and the Pb2Sr2(RE)1−xCaxCu3O8 compounds that superconduct (where RE is a rare-earth) are all s-wave, p-type superconductors.

Keywords

  • Theories and models of the superconducting state
  • Type II superconductivity
  • High-Tc compounds

Permanent address.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, Jr., and L. W. Rupp, Jr., Physica C 165, 419 (1990).

    CrossRef  ADS  CAS  Google Scholar 

  2. J. D. Jorgensen, B.W. Veal, A. P. Paulikas, L. J. Nowicki, G.W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).

    CrossRef  ADS  CAS  Google Scholar 

  3. J. D. Dow and D. R. Harshman, Intl. J. Mod. Phys. B17, 3310 (2003).

    CrossRef  ADS  Google Scholar 

  4. S. M. Rao, J. K. Srivastava, H. Y. Tang, D. C. Ling, C. C. Chung, J. L. Yang, S. R. Sheen, and M. K. Wu, J. Crystal Growth 235, 271 (2002).

    CrossRef  ADS  CAS  Google Scholar 

  5. J. D. Dow, H. A. Blackstead, and D. R. Harshman, “High-temperature superconductivity is charge-reservoir superconductivity,” pages 403–412 (2001), published in “Phase transitions and self-organization in electronic and molecular networks.” Ed. by J. C. Phillips and M. F. Thorpe. Kluwer Academic/Plenum Publishers, 2001; D. R. Harshman, W. J. Kossler, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, M. K. Wu, F. Z. Chien, J. P. Franck, I. Isacc, and J. D. Dow, Phys. Rev. B 67, 054509 (2003).

    Google Scholar 

  6. J. D. Dow, H. A. Blackstead, Z. F. Ren, and D. Z. Wang, “Magnetic resonance of Cu and of Gd in insulating GdSr2Cu2NbO8 and in superconducting GdSr2Cu2RuO8,” to be published.

    Google Scholar 

  7. S. Misra, S. Oh, D. J. Hornbaker, T. DiLuccio, J. N. Eckstein, and A. Yazdani, Phys. Rev. Lett. 89, 087002 (2002).

    CrossRef  ADS  CAS  Google Scholar 

  8. D. R. Harshman, R. N. Kleiman, M. Inui, G. P. Espinosa, D. B. Mitzi, A. Kapitulnik, T. Pfiz, and D. Ll. Williams, Phys. Rev. Lett. 67, 3152 (1991).

    CrossRef  ADS  CAS  Google Scholar 

  9. A. Bille, R. A. Klemm, and K. Scharnberg, Phys. Rev. B 64, 174507 (2001); Qiang Li, Y. N. Tsay, M. Suenaga, R. A. Klemm, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 83, 4160 (1999).

    CrossRef  ADS  Google Scholar 

  10. D. R. Harshman, W. J. Kossler, X. Wan, A. T. Fiory, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, A. Erb, and J. D. Dow, Intl. J. Mod. Phys. B 17, 3582 (2003); D. R. Harshman,W. J. Kossler, X.Wan, A. T. Fiory, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, and J. D. Dow, “Nodeless pairing state in single-crystal YBa2Cu3O7,” Phys. Rev. B, in press.

    CrossRef  ADS  CAS  Google Scholar 

  11. Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988); Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989); Y. Tokura, A. Fujimori, H. Matsubara, H. Watabe, H. Takagi, S. Uchida, M. Sakai, H. Ikeda, S. Okuda, and S. Tanaka, Phys. Rev. B 39, 9704 (1989).

    CrossRef  ADS  CAS  Google Scholar 

  12. M. Lehmann, J.D. Dow, and H. A. Blackstead, Physica C 341–348, 309 (2000); Blackstead and J. D. Dow, J. Low Temp. Phys. 117, 557 (1999).

    CrossRef  ADS  Google Scholar 

  13. S. Skanthakumar and L. Soderholm, Phys. Rev. B 53, 920 (1996); L. Soderholm, C. Williams, S. Skanthakumar, M. R. Antonio, and S. Conradson, Z. Physik B 101, 539 (1996).

    CrossRef  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dow, J.D., Harshman, D.R. (2005). High-Temperature Superconductivity of Oxides. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_21

Download citation

Publish with us

Policies and ethics