Skip to main content

Enhanced Tc Near the Metal/Insulator Transition: A New Perspective on Unconventional Superconducting Materials

  • 814 Accesses

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII,volume 183)

Abstract

Many apparently unrelated systems, including disordered metals and metallic oxides, undergo a metal/insulator transition (MIT) when their carrier concentrations are reduced and/or their disorder is increased. We have found that the superconducting transition temperature, Tc, of such materials is very often enhanced in the vicinity of the MIT. We have constructed superconductivity phase diagrams (Tc vs σ, the conductivity) for many materials whose only common feature is proximity to the MIT and found that they are remarkably similar.

Key words

  • metal insulator transition
  • superconductivity
  • HTS
  • cuprates
  • oxides
  • disordered metals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.L. Bond, A. S. Cooper, K. Andres, G. W. Hull, T. H. Geballe, and B. T. Matthias, Phys. Rev. Lett. 15, 260 (1965).

    CrossRef  ADS  CAS  Google Scholar 

  2. S. Kondo, J. Mater. Res. 7, 853 (1992).

    CrossRef  ADS  CAS  Google Scholar 

  3. M. A. Noak, A. J. Drehman, K. M. Wong, A. R. Pelton, and S. J. Poon, Physica 135B, 295 (1985).

    Google Scholar 

  4. S. Kubo, J. Appl. Phys. 63, 2033 (1988).

    CrossRef  ADS  CAS  Google Scholar 

  5. B. Stritzker, Phys. Rev. Lett. 42, 1769 (1979).

    CrossRef  ADS  CAS  Google Scholar 

  6. H. L. Luo, T. S. Radhakrishnan, and B. Stritzker, Z. Phys. B-Condensed Matter 49, 319 (1983) and references therein.

    CrossRef  ADS  CAS  Google Scholar 

  7. B. Stritzker and H. Wuhl, Z. Physik 243, 361 (1971).

    CrossRef  ADS  CAS  Google Scholar 

  8. D. Mockel and F. Baumann, Phys. Stat. Sol. (a) 57, 585 (1980).

    CrossRef  ADS  Google Scholar 

  9. N. Nishida, M. Yamaguchi, T. Furubayashi, K. Morigaki, H. Ishimoto, and K. Ono, Sol. St. Commun. 44, 305 (1982); M. Yamaguchi, N. Nishida, T. Furubayashi, K. Morigaki, H. Ishimoto, and K. Ono, Physica 117B&118B, 694 (1983); T. Furubayashi, N. Nishida, M. Yamaguchi, K. Morigaki, and H. Ishimoto, Sol. St. Commun. 55, 513 (1985);T. Furubayashi, N. Nishida, M. Yamaguchi, K. Morigaki, H. Ishimoto, Sol. St. Commun. 58, 587 (1986).

    CrossRef  ADS  CAS  Google Scholar 

  10. N. M. Jisrawi, W. L. McLean, N. G. Stoffel, M. S. Hegde, C. C. Chang, D. L. Hart, D. M. Hwang, T. S. Ravi, B. J. Wilkens, J. Z. Sun, and T. H. Geballe, Phys. Rev. B 43, 7749 (1991).

    CrossRef  ADS  CAS  Google Scholar 

  11. D. B. Kimhi and T. H. Geballe, Phys. Rev. Lett. 45, 1039 (1980).

    CrossRef  ADS  CAS  Google Scholar 

  12. S. J. Poon and W. L. Carter, Sol. St. Commun. 35, 249 (1980).

    CrossRef  ADS  CAS  Google Scholar 

  13. M. Strongin, O. F. Kammerer, and A. Paskin, Phys. Rev. Lett. 14, 949 (1965).

    CrossRef  ADS  CAS  Google Scholar 

  14. T. Zint, M. Rohde, and H. Micklitz, Phys. Rev. B 41, 4831 (1990).

    CrossRef  ADS  CAS  Google Scholar 

  15. M. Giannouri, E. Rocofyllou, C. Papastaikoudis, and W. Schilling, Phys. Rev. B 56, 6148 (1997).

    CrossRef  ADS  CAS  Google Scholar 

  16. B. I. Belevtsev, Y. F. Komnik, V. I. Odnokozov, and A. V. Fomin, J. Low Temp. Phys. 54, 587 (1984).

    CrossRef  ADS  CAS  Google Scholar 

  17. e.g. 1/ρMottmint3D in P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    CrossRef  ADS  CAS  Google Scholar 

  18. C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, and E. R. Pfeiffer, Phys. Rev. 163, 380 (1967).

    CrossRef  ADS  CAS  Google Scholar 

  19. M. S. Osofsky, R. J. Soulen, Jr., J. H. Claassen, G. Trotter, H. Kim, and J. Horwitz, Phys. Rev. Lett. 87, 197004 (2001).

    CrossRef  ADS  CAS  Google Scholar 

  20. M. Osofsky, H. Tardy, M. LaMadrid, and J. M. Mochel, Phys. Rev. B 31, 4715 (1985); M. Osofsky, H. Tardy, M. LaMadrid, and J. M. Mochel, Phys. Rev. B 32, 2101 (1985).

    CrossRef  ADS  CAS  Google Scholar 

  21. G. Hertel, D. J. Bishop, E. G. Spencer, J. M. Rowell, and R. C. Dynes, Phys. Rev. Lett. 50, 743 (1983).

    CrossRef  ADS  CAS  Google Scholar 

  22. R. J. Soulen, Jr., M. S. Osofsky, and L. D. Cooley, PRB 68, 094505 (2003).

    CrossRef  ADS  Google Scholar 

  23. Lance Cooley, Peter Lee, and David Larbalestier, in Handbook of Superconducting Materials, edited by David A. Cardwell and David S. Ginley (Institure of Physics, London, 2003).

    Google Scholar 

  24. A. Mani, L. S. Valdhyanathan, Y. Hariharan, M. P. Janawadkar, and T. S. Radhakrishnan, Cryogenics, 36, 937 (1996).

    CrossRef  ADS  CAS  Google Scholar 

  25. James Charles McKinnell, Ph. D. thesis, Univerity of Wisconsin (1990).

    Google Scholar 

  26. J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).

    CrossRef  ADS  CAS  Google Scholar 

  27. A. K.Ghosh and Myron Strongin, Superconductivity in d-and f-band Metals, p. 305–315.

    Google Scholar 

  28. F. J. Morin and J. P. Mita. Phys. Rev. 129, 1115 1963).

    CrossRef  ADS  CAS  Google Scholar 

  29. E. W. Collings, A Source book of titanium alloy superconductivity, Plenum Press, New York (1983).

    CrossRef  Google Scholar 

  30. T. G. Berlincourt and R. R. Hake, Phys. Rev 131, 140 (1963).

    CrossRef  ADS  CAS  Google Scholar 

  31. M. S. Osofsky, R. J. Soulen, Jr., J. H. Claassen, G. Trotter, H. Kim, and J. Horwitz, PRB 66, 020502(R) (2002); M. S. Osofsky, R. J. Soulen, Jr., W. Si, X. H. Zeng, A. Soukiassian, and X. Xi, Phys. Rev. B 66, 060501 (R) (2002); M. S. Osofsky, R. J. Soulen, Jr., W. Si, X. H. Zeng, A. Soukiassian, and X. Xi, IEEE Trans. Supercond. 13, 2799 (2003).

    CrossRef  ADS  Google Scholar 

  32. R. J. Soulen, Jr. and M. S. Osofsky, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osofsky, M.S., Soulen, R.J. (2005). Enhanced Tc Near the Metal/Insulator Transition: A New Perspective on Unconventional Superconducting Materials. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_19

Download citation

Publish with us

Policies and ethics