Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, G.B. (1982) The relationship between 18O and deuterium in water in sand columns undergoing evaporation. J. Hydrol. 55, 163–169.

    Google Scholar 

  • Chacko, T., Cole, D.R., Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems. Stable Isotope Geochemistry (J.W. Valley, D.R. Cole, Eds) Review in Mineralogy 43, Mineral. Soc. Am. 1–81.

    Google Scholar 

  • Clayton, R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F., Shimp, N.F. (1966) The origin of saline formation waters. 1. Isotope Composition. J. Geophys. Res. 71, 3869–3882.

    Google Scholar 

  • Coplen, T.B., Hanshaw, B.B. (1973) Ultrafiltration by a compacted clay membrane — I. Oxygen and hydrogen isotopic fractionation. Geochim. Cosmochim. Acta 37, 2295–2310.

    Google Scholar 

  • Craig, H. (1969) Geochemistry and origin of Red Sea brines. Hot Brines and Recent Heavy Metal Deposits in the Red Sea. (E. T. Degens, D. A. Ross, Eds) Springer-Verlag, 208–242.

    Google Scholar 

  • Degens, E.T., Hunt, J.M., Reuter, J.H., Reed, W.E. (1964) Data on the distribution of amino acids and oxygen isotopes in petroleum brine waters of various geologic ages. Sedimentology 3, 199–225.

    Google Scholar 

  • Eugster, H.P., Hardie, L.A. (1978) Saline Lakes. Lakes: Chemistry, Geology, Physics. (A. Lerman, Ed.) Springer-Verlag, 237–293.

    Google Scholar 

  • Fontes, J.-C., Gonfiantini, R. (1967) Comportement isotopique au cours de l’evaporation de deux bassins Sahariens. Earth Planet. Sci. Lett. 3, 258–266.

    Google Scholar 

  • Frape, S.K., Fritz, P. (1987) Geochemical trends for groundwaters from the Canadian Shield. Saline Water and Gases in Crystalline Rocks. (P. Fritz, S.K. Frape, Eds) Geol. Assoc. Canada Spec. Pap 33, 19–38.

    Google Scholar 

  • Gat, J. R. (1979) Isotope hydroglogy of very saline surface waters. Isotopes in Lake Studies. IAEA, Vienna, 151–162.

    Google Scholar 

  • Gat, J. R. (1984) The stable isotope composition of Dead Sea waters. Earth Planet. Sci. Lett. 71, 361–376.

    Article  Google Scholar 

  • Gat, J.R. (1995) Stable isotopes of fresh and saline lakes. Physics and Chemistry of Lakes. (A. Lerman, D. Imboden, J. Gat, Eds) Springer-Verlag, 139–165.

    Google Scholar 

  • Gonfiantini, R. (1965) Effetti isotopici nell’evaporazione di acque salate. Atti. Soc. Toscana Sci. Nat. Pisa, Mem. P. V. Ser. A, 72, 550–569.

    Google Scholar 

  • Graf, G.L., Friedman, I., Meents, W.F. (1965) The origin of saline formation waters, II: Isotopic fractionation by shale micropore systems. Illinois State Geol. Surv. Circular 393, 32p.

    Google Scholar 

  • Graf, G.L., Meents, W.F., Friedman, I., Shimp, N.F. (1965) The origin of saline formation waters, III: Calcium chloride waters. Illinois State Geol. Surv. Circular 397, 60p.

    Google Scholar 

  • Hanor, J.S. (1994) Origin of saline fluids in sedimentary basins. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geol. Soc. Spec. Pub. 78, 151–174.

    Google Scholar 

  • Horita, J. (1988) Hydrogen isotope analysis of natural waters using an H2-water equilibration method: A special implication to brines. Chem. Geol. (Isot. Geosci. Section) 72, 89–94.

    Google Scholar 

  • Horita, J. (1989) Analytical aspects of stable isotopes in brines. Chem. Geol. (Isot. Geosci. Section) 79, 107–112.

    Google Scholar 

  • Horita, J. (1990) Stable isotope paleoclimatology of brine inclusions in halite: Modeling and application to Searles Lake, California. Geochim. Cosmochim. Acta 54, 2059–2073.

    Article  Google Scholar 

  • Horita, J., Gat, J.R. (1988) Procedure for the hydrogen isotope analysis of water from concentrated brines. Chem. Geol. (Isot. Geosci. Section) 72, 85–88.

    Google Scholar 

  • Horita, J., Gat, J.R. (1989) Deuterium in the Dead Sea: Remeasurement and implications for the isotope activity correction in brines. Geochim. Cosmochim. Acta 53, 131–133.

    Article  Google Scholar 

  • Horita, J., Cole, D.R., Wesolowski, D.J. (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions. II: Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim. Cosmochim. Acta 57, 4703–4711.

    Google Scholar 

  • Horita, J., Cole, D.R., Wesolowski, D.J. (1995) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions. III: Vapor-liquid water equilibration of NaCl solutions to 350°C. Geochim. Cosmochim. Acta 59, 1139–1151.

    Article  Google Scholar 

  • Horita, J., Ueda, A., Mizukami, K., Takatori, I. (1989) Automatic δD and δ18O analyses of multi-water samples using H2-and CO2-water equilibration methods with a common equilibration set-up. Int. J. Radiat. Appl. Instrum., Part A, Appl. Radiat. Isot. 40, 801–805.

    Google Scholar 

  • Horita, J., Wesolowski, D.J., Cole, D.R. (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions. I: Vapor-liquid water equilibration of single salt solutions from 50 to 100°C. Geochim. Cosmochim. Acta 57, 2797–2817.

    Google Scholar 

  • Kharaka, Y.K., Carothers, W.W. (1986) Oxygen and hydrogen isotope geochemistry of deep basin brines. Handbook of Environmental Isotope Geochemistry. Vol. 2: The Terrestrial Environment, B. (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, Amsterdam, 305–360.

    Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J. (1992) Stable isotope geochemistry and origin of waters in sedimentary basins. Isotopic Signatures and Sedimentary Records. (N. Clauer, S. Chaudhuri, Eds) Springer-Verlag, 411–466.

    Google Scholar 

  • Kloppmann, W., Girard, J.-P., Negrel, P. (2002) Exotic stable isotope composition of saline waters and brines from the crystalline basement. Chem. Geology 184, 49–70.

    Article  Google Scholar 

  • Knauth, L.P., Beeunas, M.A. (1986) Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation. Geochim. Cosmochim. Acta 50, 419–433.

    Article  Google Scholar 

  • Lehmann, M., Siegenthaler, U. (1991) Equilibrium oxygen-and hydrogen-isotope fractionation between ice and water. J Glaciol 37, 23–26.

    Google Scholar 

  • Lloyd, R.M. (1966) Oxygen isotope enrichment of sweater by evaporation. Geochim Cosmochim Acta 30, 801–819.

    Article  Google Scholar 

  • Shank, W.C., III, Bohlke, J.K., Seal, R.R., II. (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. (S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, R.E. Thomson, Eds) AGU Geophysical Monograph 91, 194–221.

    Google Scholar 

  • Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Stable Isotopes in High Temperature Geological Processes (J.W. Valley, H.P. Taylor, Jr., J.R. O’Neil, Eds) Review in Mineralogy 16. Mineral. Soc. Am 165–183.

    Google Scholar 

  • Sofer, Z., Gat, J. R. (1972) Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical and geophysical implications. Earth Planet. Sci. Lett. 15, 232–238.

    Article  Google Scholar 

  • Sofer, Z., Gat, J. R. (1975) The isotopic composition of evaporating brines: Effects of the isotope activity ratio in saline solutions. Earth Planet. Sci. Lett. 26, 179–186.

    Article  Google Scholar 

  • Starinsky, A., Katz, A. (2003) The formation of natural cyrogenic brines. Geochim. Cosmochim. Acta 67, 1475–1484.

    Article  Google Scholar 

  • Stenni, B., Longinelli, A. (1990) Stable isotope study of water, gypsum and carbonate samples from the Bannock and Tyro Basins, eastern Mediterranean. Marine Chem. 31, 123–125.

    Google Scholar 

  • Stewart, M. K., Friedman, I. (1975) Deuterium fractionation between aqueous salt solutions and water vapor. J. Geophys. Res. 80, 3812–3818.

    Google Scholar 

  • Taube, H. (1954) Use of oxygen isotope effects in the study of hydration of ions. J. Phys. Chem. 58, 523–528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Horita, J. (2005). Saline Waters. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_17

Download citation

Publish with us

Policies and ethics