Skip to main content

Dating of Old Groundwater — History, Potential, Limits and Future

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, P.K., Dillon, M.A. (1998) Stable isotope composition of molecular oxygen in soil gas and groundwater: A potentially robust tracer for diffusion and oxygen consumption processes. Geochimica Cosmochimica Acta 62, 577–584.

    Article  Google Scholar 

  • Anderson, E.C., Libby, W.F., Weinhouse, S., Reid, A.F., Kirshenbaum, A.D., Grosse, A.V. (1947) Natural Radiocarbon from Cosmic Radiation. Physical Review 72, 931–936.

    Google Scholar 

  • Andres, G., Geyh, M.A., (1970) Isotopenphysikalische Untersuchungen über den Grundwasserhaushalt im überdeckten Sandsteinkeuper mit Hilfe von 14C-und 3H-Wasseranalysen. Die Wasserwirtschaft 8, 259–263.

    Google Scholar 

  • Andrews, J.N., Fontes, J.-Ch. (1992) Importance of the in situ production of 36Cl, 36Ar and 14C in hydrology and hydrogeochemistry. Isotope Techniques in Water Resources Development 1991. IAEA, Vienna, 245–269.

    Google Scholar 

  • Artinger, R., Buckau, G., Kim, J.I., Geyer, S., Wolf, M. (1996) Influence of sedimentary organic matter on dissolved fulvic acids in groundwater. Significance for groundwater dating with 14C in dissolved organic matter. Isotopes in Water Resources Management, Vol. 1. IAEA, Vienna, 57–72.

    Google Scholar 

  • Bath, A.H., Edmunds, W.M., Andrews, J.N. (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. Isotope Hydrology 1978, Vol. 2. IAEA, Vienna, 545–566.

    Google Scholar 

  • Bentley, H.W., Phillips, F.M., Davis, S.N. (1986a) Chlorine-36 in the terrestrial environment. Handbook of Environmental Isotope Geochemistry, Vol. 2 (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, Amsterdam, The Terrestrial Environment B, 427–480.

    Google Scholar 

  • Bentley, H.W., Phillips, F.M., Davis, S.N., Habermehl, M.A., Airey, P.L., Calf, G.E., Elmore, D., Gove, H.E., Torgersen, T.L. (1986b) Chlorine-36 dating of very old groundwater 1. The Great Artesian Basin, Australia. Water Resources Research 22,13, 1991–2001.

    Google Scholar 

  • Beyerle, U., Aeschbach-Hertig, W., Peeters, F., Kipfer, R., Purtschert, R., Lehmann, B., Loosli, H.H., Love, A. (1999) Noble gas data from the Great Artesian Basin provide a temperature record of Australia on time scales of 105 years. Isotope Techniques in Water Resources Development and Management. IAEA, Vienna, 97–103.

    Google Scholar 

  • Buckau, R., Artinger, R., Kim, J.I., Fritz, P., Geyer, S., Wolf, M. (1998) Groundwater dating on carbon-14 DIC. Identification and correction for mineralization of sedimentary organic carbon. Isotope Techniques in the Study of Environmental Changes. IAEA, Vienna, 807–811.

    Google Scholar 

  • Burdon, D.J. (1977) Flow of fossil groundwater. Quarterly Journal of Engineering Geology 10, 97–124.

    Google Scholar 

  • Calf, G.E., Habermehl, M.A. (1984) Isotope hydrology and hydrochemistry of the Great Artesian Basin, Australia. Isotope Hydrology 1983. IAEA, Vienna, 397–414.

    Google Scholar 

  • Clark, I.D., Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis, New York, 328p.

    Google Scholar 

  • Clark, I.D., Bajjali, W.T., Phipps, G.Ch. (1996) Constraining 14C ages in sulphate reducing groundwaters, two case studies from arid regions. Isotope Techniques in Water Resources Development. IAEA, Vienna, 43–56.

    Google Scholar 

  • Collon, P., Kutschera, W., Loosli, H.H., Lehmann, B.E., Purtschert, R., Love, A., Sampson, L., Anthony, D., Cole, D., Davids, B., Morrissey, D.J., Sherrill B.M., Steiner, M., Pardo, R.C., Paul, M. (2000) 81Kr in the Great Artesian Basin, Australia, a new method for dating very old groundwater. Earth Planetary Science Letters 182, 103–113.

    Google Scholar 

  • Du, X., Purtschert, R., Bailey, K., Lehmann, B.E., Lorenzo, R., Lu, Z.-T., Mueller, P., O’Connor, T.P., Sturchio, N.C., Young, L. (2003) A new method of measuring 81Kr and 85Kr abundances in environmental samples. Geophysical Research Letters 30,20, 2068.

    Article  Google Scholar 

  • Eriksson, E. (1958) The possible use of tritium for estimating groundwater storage. Tellus 10, 472–479.

    Article  Google Scholar 

  • Elliot, T. (1999) Palaeoages of groundwaters in a fissured chalk aquifer, UK. Isotope Techniques in Water Resources Development and Management. IAEA, Vienna, 144–154.

    Google Scholar 

  • Fabryka-Martin, J., Davis, S.N., Elmore, D. (1987) Application of 129I and 36Cl in hydrology. Nuclear Instruments and Methods B29, 361–371.

    Google Scholar 

  • Fontes, J.-Ch. (1992) Chemical and isotopic constraints on 14C dating of groundwater. Radiocarbon After Forty Decades, (R.E. Taylor, A. Long, R.S. Kra, Eds) Springer-Verlag, New York, 262–275.

    Google Scholar 

  • Fontes, J.-Ch., Garnier, J.M. (1979) Determination of the initial 14C activity of the total dissolved carbon. A review of the existing models and a new approach. Water Resources Research 15, 399–413.

    Google Scholar 

  • Franke, H.,W. (1951) Altersbestimmung von Kalzit-Konkretionen mit radioaktiven Kohlenstoff. Naturwissenschaften 22, 527.

    Google Scholar 

  • Frenzel, H., Kessels, W., Lengnick, M., Suckow, A., Geyh, M.A. (1997) Numerische Modellierung des Grundwasseralters mit dem Bahnlinienverfahren für das Modellgebiet Golpa-Nord/Gröbern und Vergleich mit Isotopendaten. BGR, Hannover, GBL-Heft 4, 168–174.

    Google Scholar 

  • Fröhlich, K. (1989) Uranium isotope studies combined with groundwater dating as natural analogue dating. Natural Analogues in Performance Assessments for the Disposal of Long Lived Radioactive Wastes. IAEA, Vienna, 46–50.

    Google Scholar 

  • Geyh, M.A. (1970) Carbon-14 concentration of lime in soils and aspects of the carbon-14 dating of groundwater. Isotope Hydrology 1970. IAEA, Vienna, 215–223.

    Google Scholar 

  • Geyh, M.A. (1972) Basic studies in hydrology and 14C and 3H measurements. Proceedings International Geology Congress,. Montreal, 24,11, 227–234.

    Google Scholar 

  • Geyh, M.A. (1992) The 14C time-scale of groundwater. Correction and linearity. Isotope Techniques in Water Resources Development 1991. IAEA, Vienna, 167–177.

    Google Scholar 

  • Geyh, M.A., Backhaus, G. (1979) Hydrodynamic aspects of carbon-14 groundwater dating. Isotope Hydrology 1978. IAEA, Vienna, 2, 631–643.

    Google Scholar 

  • Geyh, M.A., Ploethner, D. (1995) An applied palaeohydrological study in Cholistan, Thar Desert, Pakistan. Application of Tracers in Arid Zone Hydrology (E.M. Adar, Ch. Leibundgut, Eds) IAHS Press, Wallingford, Oxfordshire 23,2, 119–127.

    Google Scholar 

  • Geyh, M.A., Söfner, B. (1989) Groundwater analysis of environmental carbon and other isotopes from the Jakarta Basin aquifer, Indonesia. Radiocarbon 31,3, 919–925.

    Google Scholar 

  • Geyh, M.A., Wendt, I. (1965) Results of water sample dating by means of the model by Münnich and Vogel. Proc. Radiocarbon and Tritium Dating. Pulman/ Washington, 597–603.

    Google Scholar 

  • Geyh, M.A., Backhaus, G., Andres, G., Rudolph, J., Rath, H.K. (1984) Isotope study on the Keuper sandstone aquifer with a leaky cover layer. Isotope Hydrology 1983. IAEA, Vienna, 499–513.

    Google Scholar 

  • Geyh, M.A., Bender, H., Rajab, R., Wagner, W. (1995a) Application of 14C-groundwater dating to non-steady systems. Application of Tracers in Arid Zone Hydrology, (E.M. Adar, Ch. Leibundgut, Eds) IAHS Press, Wallingford, Oxfordshire, 232, 225–234.

    Google Scholar 

  • Geyh, M.A., Froehlich, K., Verhagen, B.Th. (1995b) Isotope hydrogeology and water balance assessment near the Nile in Sudan. Application of Tracers in Arid Zone Hydrology, (E.M. Adar, Ch. Leibundgut, Eds) IAHS Press, Wallingford, Oxfordshire, 232, 57–66.

    Google Scholar 

  • Gonfiantini, R., Zuppi, G.M. (2003) Carbon isotope exchange rate of DIC in karst groundwater. Chemical Geology 197,1–4, 319–336.

    Google Scholar 

  • Groening, M., Sonntag, C. (1993) Molecular-diffusive CO2 exchange between groundwater and modern soil CO2 as a problem of 14C groundwater dating in arid zones. Isotope Techniques in the Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. IAEA, Vienna, 563–565.

    Google Scholar 

  • Harrington, G.A., Herczeg, A.L. (1999) Estimating groundwater 14C ages in the arid TI-tree Basin, Central Australia, Use of 87Sr/86Sr to constrain sources of inorganic carbon. Isotope Techniques in Water Resources Development and Management. IAEA, Vienna, 3–4, 86–87.

    Google Scholar 

  • Ingerson, E., Pearson, F.J., Jr. (1964) Estimation of age and rate of motion of groundwater by the 14C method. Recent Researches in the Fields of Hydrosphere, Atmosphere, and Nuclear Geochemistry. Maruzen, Tokyo, 263–283.

    Google Scholar 

  • Ivanovich, M., Fröhlich, K., Hendry, M. (1991) Uranium-series, radionuclides in fluid and solid forms from the Milk River Aquifer, Alberta, Canada. Applied Geochemistry 6, 405–418.

    Google Scholar 

  • Kipfer, R., Aechbach-Hertig, W., Peeters, F., Stute, M. (2002) Noble gases in lakes and ground waters. Noble Gases in Geochemistry and Cosmochemistry, (D. Porcelli, C.J. Ballentine, R. Wieler, Eds) Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 47, 539–614.

    Google Scholar 

  • Knetsch, G., Shata, A., Degens, E., Münnich, K.O., Vogel, J.C., Shazly, M.M. (1962) Untersuchungen an Grundwässern der Ost-Sahara. Geologische Rundschau 52, 587–610.

    Google Scholar 

  • Long, A., Murphy, E.L., Davis, S.N., Kalin, R.M. (1992) Natural radiocarbon in dissolved organic carbon in groundwater. Radiocarbon After Four Decades (R.E. Taylor, A. Long, R.S. Kra, Eds) Springer-Verlag, New York, 288–308.

    Google Scholar 

  • Małoszewski, P., Zuber, A. (1984) Interpretation of artificial and environmental tracers in fissured rocks with a porous matrix. Isotope Hydrology 1983. IAEA, Vienna, 635–651.

    Google Scholar 

  • Mazor, E. (1992) Reinterpretation of 36Cl data, physical processes, hydraulic interconnections and age estimates in groundwater systems. Applied Geochemistry 7, 351–360.

    Article  Google Scholar 

  • Mook, W.G. (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotope composition. Proceedings 8 th International Conference on Radiocarbon Dating. Wellington, New Zealand, D32–39.

    Google Scholar 

  • Mook, W.G. (1976) The dissolution-exchange model for dating groundwater with 14C. Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. IAEA, Vienna, 213–225.

    Google Scholar 

  • Münnich, K.O. (1957) Messung des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften 34, 32–33.

    Google Scholar 

  • Münnich, K.O., (1968) Isotopen-Datierung von Grundwasser. Naturwissenschaften 55, 158–163.

    Google Scholar 

  • Münnich, K.O., Vogel, J.C. (1959) 14C-Altersbestimmung von Grundwasser. Naturwissenschaften 46,1, 10–12.

    Google Scholar 

  • Murphy, E.M., Schramke, J.A., Frederikson, J.K., Bledsoe, H.W., Francis, A.J., Sklarew, D.S., Lineham, J.C. (1992) The influence of microbial activity and sedimentary organic carbon in the isotope geochemistry of the Middendorf aquifer. Water Resources Research 28, 723–740.

    Article  Google Scholar 

  • Olsson, I.U. (1979) The radiocarbon contents of various reservoirs. Radiocarbon Dating, (R. Berger, H.E. Suess, Eds) University of California Press, Berkeley, 613–618.

    Google Scholar 

  • Pearson, F.J., Jr. (1992) Effects of parameter uncertainty in modelling 14C in groundwater. Radiocarbon After Four Decades (R.E. Taylor, A. Long, R.S. Kra, Eds) Springer-Verlag, New York, 262–275.

    Google Scholar 

  • Pearson, F.J., Jr,. Noronha, C.J., Andrews, R.W. (1983) Mathematical modelling of the distribution of natural 14C, 234U, and 238U in a regional ground-water system. Radiocarbon 25,2, 291–300.

    Google Scholar 

  • Phillips, F.M., Bentley, H.W, Davis, S.N., Elmore, D., Swanick, G.B. (1986) Chlorine 36 dating of very old groundwater 2. Milk river aquifer, Alberta, Canada. Water Resources Research 22,13, 2003–2016.

    Google Scholar 

  • Phillips, F.M., Tansey, M.K., Peeters, L.A., Cheng, S., Long, A. (1989) An isotopic investigation of groundwater in the Central San Juan Basin, New Mexico. Carbon 14 dating as a basis for numerical modeling. Water Resources Research 25, 2259–2273.

    Google Scholar 

  • Plummer, L.N. (1977) Defining reactions and mass transfer in part of the Floridan Aquifer. Water Resources Research 13,5, 801–812.

    Google Scholar 

  • Plummer, N., Prestemon, E.C., Parkhurst, D.L. (1991) An interactive code (NETPATH) for modelling NET geochemical reactions along a flow PATH. Water-Resources Investigations Report 91-4078, 99p.

    Google Scholar 

  • Reardon, E.J., Fritz, P.E. (1978) Computer modelling of groundwater 13C and 14C isotope compositions. Journal of Hydrology 36, 201–224.

    Article  Google Scholar 

  • Rogojin, V., Carmi, I., Kronfeld, J. (1998) 14C and 234U-excess dating of ground-water in the Haifa Bay region, Israel. Radiocarbon 40,2, 945–951.

    Google Scholar 

  • Salem, O., Visser, J.H., Dray, M., Gonfiantini, R. (1980) Groundwater flow patterns in the western Libyan Arab Jamahiriaya. Arid-Zone Hydrology, Investigations with Isotope Techniques. IAEA, Vienna, 165–179.

    Google Scholar 

  • Sanford, W.E., Buabeng, S. (1996) A comparison of ground-water ages based on carbon-14 data and three-dimensional advective-transport modelling of the lower Chao Phraya Basin. Palaeohydrology and implications for water resources development in Thailand. Isotopes in Water Resources Management, Vol 2. IAEA, Vienna, 383–394.

    Google Scholar 

  • Sonntag, C., Klitzsch, E., Löhnert, E.P., El-Shazly, E.M., Münnich, K., Junghans, Ch., Thorweihe, U., Weistroffer, K., Swailem, F.M. (1979) Palaeoclimate information from deuterium and oxygen-18 and carbon-14 dated North Saharian groundwaters. Groundwater formation in the past. Isotope Hydrology 1978. IAEA, Vienna, 569–581.

    Google Scholar 

  • Sonntag, C., Thorweihe, U., Rudolph, J., Löhnert, E.P., Junghans, C., Münnich, K.O., Klitzsch, E., El-Shazly, E.M., Swailem, F.M. (1980) Paleoclimatic evidence in apparent 14C ages of Saharian groundwaters. Radiocarbon 22,3, 871–878.

    Google Scholar 

  • Sturchio, N.C., Du, X., Purtschert, R., Lehmann, B.E., Sultan, M., Patterson, L.J., Lu, Z.-T., Müller, P., Bigler, T., Bailey, K., O’Connor, T.P., Young, L., Lorenzo, R., Becker, R., El Alfy, B., El Kaliouby, B., Dawood, Y., Abdallah, A.M.A. (2003) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophysical Research Letters 31, L05503.

    Google Scholar 

  • Tamers, M.A. (1967) Surface-water infiltration and groundwater movement in arid zones of Venezuela. Isotopes in Hydrology. IAEA, Vienna, 339–353.

    Google Scholar 

  • Tamers, M.A. (1975) Validity of radiocarbon dates of groundwater. Geological Survey 2, 217–239.

    Google Scholar 

  • Torgersen, T., Ivey, G.N. (1985) Helium accumulation in groundwater. II. A model for the accumulation of the crystal 4He degassing flux. Geochimica Cosmochimica Acta 49, 2445–2452.

    Google Scholar 

  • Verhagen, B.Th. (1984) Environmental isotope study of a groundwater supply project in the Kalahari of Gordonia. Isotope Hydrology 1983. IAEA, Vienna, 415–432.

    Google Scholar 

  • Verhagen, B.Th., Mazor, E., Sellshop, G.P.F. (1974) Radiocarbon and tritium evidence for direct rain recharge to ground waters in the northern Kalahari. Nature 249, 643–644.

    Article  Google Scholar 

  • Verhagen, B.Th., Geyh, M.A., Fröhlich, K., Wirth, K. (1991) Isotope Hydrologic Methods for the Quantitative Evaluation of Ground Water Resources in Arid and Semi-arid Areas. Development of a Methodology. Ministry of Economics, Bonn, 164p.

    Google Scholar 

  • Vogel, J.C. (1966) Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology. IAEA, Vienna, 355–369.

    Google Scholar 

  • Vogel, J.C. (1970) Carbon-14 dating of groundwater. Isotope Hydrology 1970. IAEA, Vienna, 225–240.

    Google Scholar 

  • Vogel, J.C., Ehhalt, D. (1963) The use of the carbon isotopes in groundwater studies. Radioisotopes in Hydrology. IAEA, Vienna, 383–395.

    Google Scholar 

  • Wagner, W., Geyh, M.A. (1999) Application of Environmental Isotope Methods for Groundwater Studies in the ESCWA Region. Geologisches Jahrbuch 67C, 5–129.

    Google Scholar 

  • Wassenaar, L., Aravena, R. (1991) Radiocarbon in dissolved organic carbon, a possible groundwater dating method, case studies from western Canada. Water Resources Research 27,8, 1975–1986.

    Article  Google Scholar 

  • Weise, S.M., Faber, P., Stute, M. (1992) Neon-21-a possible tool for dating very old groundwaters? Isotope Techniques in Water Resources Development 1991. IAEA, Vienna, 179–188.

    Google Scholar 

  • Wendt, I., Stahl, W., Geyh, M., Fauth, H. (1967) Model experiments for 14C water-age determinations. Isotopes in Hydrology. IAEA, Vienna, 321–337.

    Google Scholar 

  • Wigley, T.M.L. (1976) Effect of mineral precipitation on isotopic composition and 14C dating of groundwater. Nature 263 (No. 5574), 219–221.

    Article  Google Scholar 

  • Wigley, T.M.L. (1977) Carbon-14 dating of groundwater from closed and open systems. Water Resources Research 11, 324–328.

    Google Scholar 

  • Wigley, T.M.L., Plummer, L.N., Pearson. F.J., Jr. (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochimica Cosmochimica Acta 42, 1117–1139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Geyh, M. (2005). Dating of Old Groundwater — History, Potential, Limits and Future. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_15

Download citation

Publish with us

Policies and ethics