Skip to main content

Dating of Young Groundwater

  • Chapter
Isotopes in the Water Cycle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbach-Hertig, W., Peeters, F., Kipfer, R. (2000) Paleotemperature reconstruction from noble gases in groundwater taking into account equilibrium with entrapped air. Nature 405, 1040–1044.

    Article  Google Scholar 

  • Aeschbach-Hertig, W., Peeters, F., Beyerle, U., Kipfer, R. (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour. Res. 35, (1999) 2779–2792.

    Article  Google Scholar 

  • Aeschbach-Hertig, W., Schlosser, P., Stute, M., Simpson, H.J., Ludin, A., Clark, J.F. (1998) A 3H/3He study of groundwater flow in a fractured bedrock aquifer. Ground Water 36(4), 661–670.

    Google Scholar 

  • Aeschbach-Hertig, W., Stute, M., Clark, J.F., Reuter, R.F., Schlosser, P. (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA). Geochim. Cosmochim. Acta 66(5), 797–817.

    Article  Google Scholar 

  • Andrews, J.N. (1992) Mechanism for noble gas dissolution by groundwaters. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 87–110.

    Google Scholar 

  • Andrews, J.N., (1991) Noble gases and radioelements in groundwaters. Applied Groundwater Hydrology (R.A. Downing, W.B. Wilkinson, Eds) Clarendon Press, Oxford, 243–265.

    Google Scholar 

  • Andrews, J.N., Balderer, W., Bath, A.H., Clausen, H.B., Evans, G.V., Florkowski, T., Goldbrunner, J.E., Ivanovich, M., Loosli, H., Zojer, H. (1984) Environmental isotope studies in two aquifer systems: A comparison of groundwater dating methods. Isotope Hydrology 1983 (Proc. Symp. Vienna, 1983) IAEA, Vienna, 535–576.

    Google Scholar 

  • Andrews, J.N., Davis, S.N., Fabryka-Martin, J., Fontes, J.-Ch., Lehmann, B.E., Loosli, H.H., Michelot, JL., Moser, H., Smith, B., Wolf, M. (1989) The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. Geochim. Cosmochim. Acta 53, 1803–1815.

    Google Scholar 

  • Andrews, J.N., Florkowski, T., Lehmann, B.E., Loosli, H.H. (1991) Underground production of radionuclides in the Milk River aquifer, Alberta, Canada. Applied Geochem. 6, 425–434.

    Google Scholar 

  • Andrews, J.N., Giles, I.S., Kay, L.F., Lee, D.J., Osmond, J.K., Cowart, J.B., Fritz, P., Barker, J.F., Gale, J. (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim. Cosmochim. Acta 46, 1533–1543.

    Article  Google Scholar 

  • Andrews, J.N., Goldbrunner, J.E., Darling, W.G., Hooker, P.J., Wilson, G.B., Youngman, M.J., Eichinger, L., Rauert, W., Stichler, W. (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria. Applied Geochem. 73, 317–332.

    Google Scholar 

  • Andrews, J.N., Lee, D.J. (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J. Hydrol. 41, 233–252.

    Article  Google Scholar 

  • Bauer, S., Fulda, C., Schäfer, W. (2001) A multi-tracer study in a shallow aquifer using age dating tracers 3H, 85Kr, CFC-113 and SF6 — indication for retarded transport of CFC-113. J. Hydrol. 248, 14–34.

    Article  Google Scholar 

  • Bayari, S. (2002) TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium. Computers and Geosciences 28, 621–630.

    Article  Google Scholar 

  • Bayer, R., Schlosser, P., Bönisch, G., Rupp, H., Zaucker, F., Zimmek, G. (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He in-growth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Jahrgang (1989), 5. Abhandlung, Springer-Verlag, 42 p.

    Google Scholar 

  • Beyerle, U., Aeschbach-Hertig, W., Hofer, M., Imboden, D.M., Baur, H., Kipfer, R. (1999) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs. J. Hydrol. 220, 169–185.

    Article  Google Scholar 

  • Böhlke, J. K., Denver, J. M. (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour. Res. 31,(9) 2319–2339.

    Google Scholar 

  • Böhlke, J.K., O’Brien, A.K., Michel, R.L. (1996) Isotopic evidence for discharge of old atmospheric sulfate from a forested mountain catchment in Virginia. Eos.Trans. Amer. Geophys. Union 77, S102.

    Google Scholar 

  • Bu, X., Warner, M.J. (1995) Solubility of chlorofluorocarbon 113. Water and Seawater 42(7), 1151–1161.

    Google Scholar 

  • Bullister, J. L., Weiss, R.F. (1988) Determination of CFC3F and CCl2F2 in seawater and air. Deep-Sea Res. 35, 839–854.

    Article  Google Scholar 

  • Bullister, J. L., Wisegarver, D.P., Menzia, F.A. (2002) The solubility of sulfur hexafluoride in water and seawater. Deep-Sea Res., Part I, 49, 175–187.

    Google Scholar 

  • Burgman, J.O., Calles, B., Westman, F. (1987) Conclusions from a ten year study of oxygen-18 in precipitation and runoff in Sweden. Isotope Techniques in Water Resources Development. IAEA, Vienna, 579–590.

    Google Scholar 

  • Burns, D.A., Murdoch, P.S., Lawrence, G.B., Michel, R.L. (1998) Effect of groundwater springs on NO3 − concentrations during summer in Catskill Mountain streams. Water Resour. Res. 34, 1987–1996.

    Google Scholar 

  • Burns, D.A., Plummer, L.N., McDonnell, J.J., Busenberg, E., Casile, G.C., Kendall, C., Hooper, R.P., Freer, J.E., Peters, N.E., Beven, K., Schlosser, P. (2003) The geochemical evolution of riparian groundwater in a forested Piedmont catchment. Ground Water 41, 913–925.

    Google Scholar 

  • Burton, W.C., Plummer, L.N, Busenberg, E., Lindsey, B., D., Gburek, W.R. (2002) Influence of fracture anisotropy on ground-water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40(3), 242–257.

    Article  Google Scholar 

  • Busenberg, E., Plummer, L.N. (1991) Chlorofluorocarbons (CCl 3 F and CCl 2 F 2 ): Use as an age dating tool and hydrologic tracer in shallow ground-water systems. Proc. U.S. Geological Survey Toxic Substances Hydrology Program, Technical Meeting. Monterey, California, March 11–15 (G. L. Mallard, D. A. Aronson, Eds) U.S. Geological Survey, Water-Resources Investigations Report 91-4034, 542–547.

    Google Scholar 

  • Busenberg, E., Plummer, L. N. (1992) Use of chlorofluoromethanes (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: Example-The alluvium and terrace system of Central Oklahoma. Water Resour. Res. 28, 2257–2283.

    Article  Google Scholar 

  • Busenberg, E., Plummer, L.N., Bartholomay, R.C. (2001) Estimated age and source of the young fraction of groundwater at the Idaho National Engineering and Environmental Laboratory. U.S. Geological Survey Water-Resources Investigations Report 01-4265 (DOE/ID-22177) 144 p.

    Google Scholar 

  • Busenberg, E., Plummer, L.N., Bartholomay, R.C., Wayland, J.E., (1998) Chlorofluorocarbons, sulfur hexafluoride and dissolved permanent gases in groundwater from selected sites at and near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994–97. U.S. Geological Survey, Open-File Report 98-274, 72 p.

    Google Scholar 

  • Busenberg, E., Plummer, L.N. (1997) Use of sulfur hexafluoride as a dating tool and as a tracer of igneous and volcanic fluids in ground water. Geol. Soc. Am., Annual Meeting. GSA Abstracts with Programs 29(6), A–78.

    Google Scholar 

  • Busenberg, E., Plummer, L.N. (2000) Dating young groundwater with sulfur hexafluoride — Natural and anthropogenic sources of sulfur hexafluoride. Water Resour. Res. 36, 3011–3030.

    Article  Google Scholar 

  • Castro, M.C., Jambon, A., De Marsily, G., Schlosser, P. (1998) Noble gases as natural tracers of water circulation in the Paris Basin. 1. Measurements and discussion of their origin and mechanisms of vertical transport in the basin. Water Resour. Res. 34(10), 2443–2466.

    Google Scholar 

  • Castro, M.C., Goblet, P., Ledoux, E., Violette, S., De Marsily, G. (1998) Noble gases as natural tracers of water circulation in the Paris Basin. 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res. 34(10), 2467–2483.

    Google Scholar 

  • Castro, M.C., Stute, M., Schlosser, P. (2000) Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Applied Geochem. 15, 1137–1167.

    Google Scholar 

  • Clausen, H.B., Buchmann, B., Ambach, W. (1967) Si32 dating of an alpine glacier (Proc. I.U.G.G. Conf.) Snow and Ice Commission, Bern, 135–140.

    Google Scholar 

  • Clausen, H.B. (1973) Dating of polar ice by 32Si. J. Glaciology 12(66), 411–416.

    Google Scholar 

  • Climate Change (1995) Intergovermental Panel on Climate Change-IPCC 1995. Summary for Policymakers and Technical Summary of the Working Group I Report.

    Google Scholar 

  • Cook, P.G., Solomon, D.K. (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J. Hydrol. 19(1), 245–265.

    Google Scholar 

  • Cook, P.G., Böhlke, J.K. (2000) Determining timescales for groundwater flow and solute transport. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A. L. Herzeg, Eds) Kluwer Academic Press, 1–30.

    Google Scholar 

  • Cook, P.G., Herczeg, A.L. (2000) Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, Boston, 529 p.

    Google Scholar 

  • Cook, P.G., Solomon, D.K., Plummer, L.N., Busenberg, E., Schiff, S.L.(1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res. 31(3), 425–434.

    Article  Google Scholar 

  • Cook, P.G., Solomon, D.K., Sanford, W.E., Busenberg, E., Plummer, L.N., Poreda, R.J. (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour. Res. 32(6), 1501–1509.

    Article  Google Scholar 

  • Cook, P.G., Solomon, D.K. (1995) The transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton-85. Water Resour. Res. 31, 263–270.

    Google Scholar 

  • Cunnold, D.M., Weiss, R.F., Prinn, R.G., Hartley, D., Simmonds, P.G., Fraser, P.J., Miller, B., Alyea, F.N., Porter, L. (1997) GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J. Geophys. Res.-Atmos. 102(D1), 1259–1269.

    Article  Google Scholar 

  • Dansgaard, W., Clausen, H.B., Aarkrog, A. (1966) Evidence for bomb-produced silicon 32. J Geophys. Res. 71(22), 5474–5477.

    Google Scholar 

  • Dansgaard, W., Clausen, H.B., Aarkrog A. (1966) The Si32 fallout in Scandinavia, A new method for ice dating. Tellus 18, 187–191.

    Google Scholar 

  • Davis, S.N., Bentley, H.W. (1982) Dating groundwater, a short review. Nuclear and Chemical Dating Techniques: Interpreting the Environmental Record (L.A. Cutrie, Ed.) American Chemical Society Symposium Series, No. 176, Washington, D.C., 187–222.

    Google Scholar 

  • Davis, S.N., Thompson, G.M., Bentley, H.W., Stiles, G. (1980) Ground-water tracers-a short review. Ground Water 18(1), 14–23.

    Google Scholar 

  • Dunkle, S.A., Plummer, L.N., Busenberg, E., Phillips, P.J., Denver, J.M., Hamilton, P.A., Michel, R.L., Coplen, T.B. (1993) Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow ground water of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour. Res. 29(12), 3837–3860.

    Article  Google Scholar 

  • Edmunds, W.M., Smedley, P.L. (2000) Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. Applied Geochem. 15, 737–752.

    Google Scholar 

  • Ekwurzel, B., Schlosser, P. Smethie, W., Jr., Plummer, L.N., Busenberg, E,. Michel, R.L., Weppernig, R., Stute, M (1994) Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons and 85Kr. Water Resour. Res. 30(6), 1693–1708.

    Article  Google Scholar 

  • Engesgaard, P., Molson, J. (1998) Direct simulation of groundwater age in the Rabis Creek aquifer, Denmark. Ground Water 36(4), 77–582.

    Google Scholar 

  • Epler, N.A. (1990) Chlorofluoromethanes as Tracers of Recent Groundwater on Long Island, NewYyork. (abstracts). Nwwa Annual Meeting, Anaheim, CA, Sept. 25–26, 8.

    Google Scholar 

  • Eriksson, E. (1983) Stable isotopes and tritium in precipitation. Guidebook on Nuclear Techniques in Hydrology, 1983 Edition. Technical Reports Series 91, IAEA, Vienna, 19–33.

    Google Scholar 

  • Eriksson, E. (1958) The possible use of tritium for estimating groundwater storage. Tellus 10, 472–478.

    Article  Google Scholar 

  • Evans, G.V. (1983) Tracer techniques in hydrology. Int. J. Appl. Radiat. Isot. 34(1), 451–475.

    Article  Google Scholar 

  • Fabryka-Martin, J., Bentley, H., Elmore, D., Airey, P.L. (1985) Natural iodine-129 as an environmental tracer. Geochim. Cosmochim. Acta 49, 337–347.

    Article  Google Scholar 

  • Fairbanks, W.M., Jr., Hansen, C.S., Labelle, R.D., Pan, X.-J., Zhang, Y., Chamberlin, E.P., Nogar, N.S., Miller, C.M., Fearey, B.L., Oona, H. (1998) Photon burst mass spectrometry for the measurement of 85Kr at ambient levels. Proc. Soc. Photo-Opt. Instr. Eng., 3270, 174–180.

    Google Scholar 

  • Florkowski, T., Morawska, L., Rozanski, K. (1988) Natural production of radionuclides in geological formations. Nucl. Geophys. 2, 1–14.

    Google Scholar 

  • Florkowski, T. (1992) Natural production of radioactive noble gases in the geosphere. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna 11–27.

    Google Scholar 

  • Florkowski, T., Rozanski, K. (1986) Radioactive noble gases in the terrestrial environment. Handbook of Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment, B (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, New York, N.Y. 481–506.

    Google Scholar 

  • Fontes, J.-Ch. (1983) Dating of groundwater. Guidebook on Nuclear Techniques in Hydrology, 1983 Edition. Technical Reports Series 91, IAEA, Vienna, 285–317.

    Google Scholar 

  • Forster, M., Maier, P., Loosli, H.H. (1992) Current techniques for measuring the activity of 37Ar and 39Ar in the environment. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 63–72.

    Google Scholar 

  • Forster, M., Ramm, K., Maier, P. (1992) Argon-39 dating of groundwater and its limiting conditions. Isotope Techniques in Water Resources Development 1991. IAEA, Vienna, 203–214.

    Google Scholar 

  • Fröhlich, K., Franke, T., Gellermann, R., Hebert, D., Jordan, H. (1987) Silicon-32 in different aquifer types and implications for groundwater dating. Isotope Techniques in Water Resources Development. IAEA, Vienna, 149–163.

    Google Scholar 

  • Fröhlich, K. (1990) On dating of old groundwater. Isotopenpraxis 26, 557–560.

    Google Scholar 

  • Gamlen, P. H., Lane, B. C., Midgley, P. M., Steed, J. M. (1986) The production and release to the atmosphere of CCl3F and CCl2F2 (chlorofluorocarbons CFC 11 and CFC 12). Atmos. Environ. 20, 1077–1085.

    Google Scholar 

  • Geller, L. S., Elkins, J. W., Lobert, J.M., Clarke, A., D. Hurst, D. F., Butler, J. H., Myer, R. C. (1997) Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett. 24, 675–678.

    Article  Google Scholar 

  • Gellermann, R., Franke, T., Fröhlich, K. (1987) Results of systematic tests of the 32Si measuring procedure for water samples. Appl. Radiat. Isot. 38(12), 1039–1046.

    Google Scholar 

  • Goode, D. J., Busenberg, E., Plummer, L. N., Shapiro, A. M., Vroblesky, D. A. (1999) CFCs in the Unsaturated Zone and in Shallow Groundwater at Mirror Lake, New Hampshire. U.S. Geological Survey, Water-Resources Investigations Report 99-4018C, 809–820.

    Google Scholar 

  • Goode, D. (1996) Direct simulation of groundwater age. Water Resour. Res. 32(2), 289–296.

    Article  Google Scholar 

  • Grabczak, J., Zuber, A., MaÅ‚oszewski, P., Rozanski, K., Weiss, W., Sliwka, I. (1982) New mathematical models for the interpretation of environmental tracers in groundwaters and the combined use of tritium, C-14, Kr-85, He-3, and Freon-11 for groundwater studies. Beitr. Geol. Schweiz, Hydrol. 28, 395–406.

    Google Scholar 

  • Harnisch, J., Eisenhauer, A. (1998) Natural CF4 and SF6 on earth. Geophys. Res. Lett. 25, 2401–2404.

    Google Scholar 

  • Harnisch, J., Frische, M., Bochers, R., Eisenhauer, A., Jordan, A. (2000) Natural fluorinated organics in fluorite and rocks. Geophys. Res. Lett. 27, 1883–1886.

    Article  Google Scholar 

  • Hayes, J.M., Thompson, G.M. (1977) Trichlorofluoromethane in Groundwater — A Possible Indicator of Groundwater Age. Water Resources Research Center, Technical Report 90, Purdue University, NTIS Report PB 265 170 25 p.

    Google Scholar 

  • Ho, D.T., Schlosser, P., Smethie, W.M., Jr., Simpson, H.J. (1998) Variability in atmospheric chlorofluorocarbons (CCl3F and CCl2F2) near a large urban area: Implications for groundwater dating. Environ. Sci. Technol. 32(16), 2377–2382.

    Article  Google Scholar 

  • Hofer, M., Peeters, F., Aeschbach-Hertig, W., Brennwald, M., Holocher, J., Livingstone, D.M. (2002) Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers. Limnol. Oceanog. 47(4), 1210–1216.

    Article  Google Scholar 

  • Hurley, P.M. (1954) The helium age method and the distribution and migration of helium in rocks. Nuclear Geology (H. Faul, Ed.) Wiley and Sons, New York, 301–329.

    Google Scholar 

  • International Atomic Energy Agency, Guidebook on the Use of Chlorofluorocarbons in Hydrology (in preparation).

    Google Scholar 

  • International Atomic Energy Agency (1982) Tracer Methods in Isotope Hydrology. IAEA-TECDOC-291, IAEA, Vienna, 193 p.

    Google Scholar 

  • International Atomic Energy Agency (1991) Use of Artificial Tracers in Hydrology. IAEA-TECDOC-601, IAEA, Vienna, 230 p.

    Google Scholar 

  • Jackson, R.E., Lesage, S., Priddle, M.W. (1992) Estimating the fate and mobility of CFC-113 in groundwater: Results from the Gloucester landfill project. Groundwater Contamination and Analysis at Hazardous Waste Sites (S. Lesage, R.E. Jackson, Eds) Marcel Dekker, New York, N.Y. 511–526.

    Google Scholar 

  • Jenkins, W.J. (1977) Tritium helium dating in the Sargasso Sea; a measurement of oxygen utilization rates. Science 196, 291–292.

    Google Scholar 

  • Johnston, C.T., Cook, P.G., Frape, S.K., Plummer, L.N., Busenberg, E., Blackport, R.J. (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36(1), 171–180.

    Article  Google Scholar 

  • Katz, B.G., Böhlke, J.K., Hornsby, H.D. (2001) Timescales for nitrate contamination of spring waters, northern Florida, USA. Chem. Geol. 179, 167–186.

    Google Scholar 

  • Katz, B.G., Lee, T.M., Plummer, L.N., Busenberg, E. (1995) Chemical Evolution of groundwater near a sinkhole lake, northern Florida. 1. Flow patterns, age of groundwater, and influence of lakewater leakage. Water Resour. Res. 31(6), 1549–1564.

    Google Scholar 

  • Kipfer, R., Aeschbach-Hertig, W., Peeters, F., Stute, M. (2002) Noble gases in lakes and ground waters. Noble Gases in Geochemistry and Cosmochemistry (D. Porcelli, C.J. Ballentine, R. Wieler, Eds) Reviews in Mineralogy and Geochemistry, Vol. 47, Mineralogical Society of America, Washington, D.C. 615–700.

    Google Scholar 

  • Kipfer, R., Hofer, M., Peeters, F., Imboden, D.M., Domysheva, V.M. (2000) Vertical turbulent diffusion and upwelling in Lake Baikal estimated by inverse modeling of transient tracers. J. Geophys. Res. 105(C2), 3451–3464.

    Article  Google Scholar 

  • Lal, D., Goldberg, E.D., Koide, M. (1960) Cosmic-ray-produced 32Si in Nature. Science 131, 332–337.

    Google Scholar 

  • Lal, D., Nijampurkar, V.N., Rama, S. (1970) Silicon-32 hydrology. Isotope Hydrology 1970. IAEA, Vienna, 847–868.

    Google Scholar 

  • Lal, D., Peters, B. (1966) Cosmic ray produced radioactivity on the earth. Handbuch der Physik 46 (K. Sitte, Ed.) Springer-Verlag, Berlin, 551–612.

    Google Scholar 

  • Lehmann, B.E., Davis, S.N., Fabryka-Martin, J.T. (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour. Res. 29(7), 2027–2040.

    Article  Google Scholar 

  • Loosli, H.H. (1983) A dating method with 39Ar. Earth Planet. Sci. Lett. 63, 51–62.

    Article  Google Scholar 

  • Loosli, H.H. (1992) Application of 37Ar, 39Ar and 85Kr in hydrology, oceanography and atmospheric studies. Current State of the Art. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 73–85.

    Google Scholar 

  • Loosli, H.H., Lehmann, B.E.. (1991) Argon-39 and argon-37. Applied isotope hydrogeology. A case in northern Switzerland. Studies In Environmental Science 43, (F.J. Pearson, Jr., W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Eds) Elsevier, Amsterdam, 266–275.

    Google Scholar 

  • Loosli, H.H., Lehmann, B.E., Balderer, W. (1989) Argon-39, argon-37 and krypton-85 isotopes in Stripa groundwaters. Geochim. Cosmochim. Acta 53, 1825–1829.

    Article  Google Scholar 

  • Loosli, H.H., Lehmann, B.E., Däppen, G. (1991) Dating by radionuclides. Applied Isotope hydrogeology. A case in northern Switzerland. Studies In Environmental Science 43 (F.J. Pearson, Jr., W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Eds) Elsevier, Amsterdam, 153–170.

    Google Scholar 

  • Loosli, H.H., Lehmann, B.E., Smethie, W.M. Jr. (2000) Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A. L. Herczeg, Eds) Kluwer Academic Press, 379–396.

    Google Scholar 

  • Loosli, H.H., Lehmann, B.E., Thalmann, C., Andrews, J.N., Florkowski, T. (1992) Argon-37 and argon-39: Measured concentrations in groundwater compared with calculated concentrations in rock. Isotope Techniques in Water Resources Development 1991. IAEA, Vienna, 189–201.

    Google Scholar 

  • Loosli, H.H., Oeschger, H. (1979) Argon-39, carbon-14, and krypton-85 measurements in groundwater samples. Isotope Hydrology 1978 (Proc. Symp. Vienna, 1978) IAEA, Vienna, 931–947.

    Google Scholar 

  • Loosli, H.H., Oeschger, H. (1968) Detection of 39Ar in atmospheric argon. Applied Geochem. 5, 191–198.

    Google Scholar 

  • Loosli, H.H., Oeschger, H. (1980) Use of 39Ar and 14C for groundwater dating. Radiocarbon 22(3), 863–870.

    Google Scholar 

  • Lucas, L.L., Unterweger, M.P. (2000) Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards and Technology 104(4), 541–549.

    Google Scholar 

  • Maiss, M., Brenninkmeijer, C. A. M. (1998) Atmospheric SF6: Trends, sources, and prospects. Environ. Sci. Technol. 32, 3077–3086.

    Article  Google Scholar 

  • Maiss, M., Levin, I. (1994) Global increase of SF6 observed in the atmosphere. Geophys. Res. Lett. 21, 569–572.

    Article  Google Scholar 

  • MaÅ‚oszewski, P., Zuber, A. (1996) Lumped parameter models for the interpretation of environmental tracer data. Manual On The Mathematical Models In Isotope Hydrogeology. IAEA-TECDOC-910, IAEA, Vienna, 9–58.

    Google Scholar 

  • MaÅ‚oszewski, P., Zuber, A. (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J. Hydrol. 57, 207–231.

    Google Scholar 

  • MaÅ‚oszewski., P., Zuber, A. (1983) Theoretical possibilities of the 3H-3He method in investigations of groundwater systems. Catena 10, 189–198.

    Google Scholar 

  • MaÅ‚oszewski, P., Rauert, W., Stichler, W., Herrmann, A. (1983) Application of flow models to an Alpine catchment area using tritium and deuterium data. J. Hydrol. 66, 319–330.

    Google Scholar 

  • Marine, I.W. (1979) The use of naturally occurring helium to estimate groundwater velocities for studies of geologic storage of radioactive waste. Water Resour. Res. 15(5), 1130–1136.

    Google Scholar 

  • Marty, B., Torgersen, T., Meynier, V., O’Nions, R.K., de Marsily, G. (1993) Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour. Res. 29(4), 1025–1035.

    Article  Google Scholar 

  • Mattle, N., Kinzelbach, W., Beyerle, U., Huggenberger, P., Loosli, H.H. (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J. Hydrol. 242, 183–196.

    Article  Google Scholar 

  • Mazor, E., Bosch, A. (1992) Helium as a semi-quantitative tool for groundwater dating in the range of 104–108 years. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 163–178.

    Google Scholar 

  • Michel, R.L. (1989) Tritium Deposition over the Continental United States, 1953–1983, Atmospheric Deposition. International Association of Hydrological Sciences, Oxfordshire, UK, 109–115.

    Google Scholar 

  • Michel, R.L., Campbell, D., Clow, D., Turk, J.T. (2000) Timescales for migration of atmosphericallyderived sulphate through an alpine watershed, Loch Vale, Colorado. Water Resour. Res. 36, 27–36.

    Article  Google Scholar 

  • Michel, R.L. (2000) Sulfur-35. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A.L. Herczeg, Eds) Kluwer Academic Press, 502–504.

    Google Scholar 

  • Michel, R.L., Turk, J.T. (1995) Use of sulfur-35 and tritium to study rates of sulfur migration in the Flat Tops Wilderness Area, Colorado. Isotopes in Water Resources Management. IAEA, Vienna 293–301.

    Google Scholar 

  • Michel, R.L., Turk, J.T., Campbell, D.H., Mast, M.A. (2002) Use of natural 35S to trace sulphate cycling in small lakes, Flattops Wilderness Area, Colorado, U.S.A. Water, Air, and Soil Pollution: Focus 2, 5–18.

    Article  Google Scholar 

  • Midgley, P. M., Fisher, D. A. (1993) Production and release to the atmosphere of chlorodifluoromethane (HCFC-22). Atmos. Environ. 27A, 2215–2223.

    Google Scholar 

  • Modica, E., Buxton, H.T., Plummer, L.N. (1998) Evaluating the source and residence times of groundwater seepage to headwaters streams, New Jersey Coastal Plain. Water Resour. Res. 34(11), 2797–2810.

    Article  Google Scholar 

  • Morgenstern, U. (2000) Silicon-32. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A.L. Herczeg, Eds) Kluwer Academic Press, 498–502.

    Google Scholar 

  • Morgenstern, U., Gellermann, R., Hebert, D., Börner, I., Stolz, W., Vaikmäe, R., Rajamäe, R., Putnik, H. (1995) 32Si in limestone aquifers. Chem. Geol. 120, 127–134.

    Article  Google Scholar 

  • Morgenstern, U., Geyh, M.A., Kudrass, H.R., Ditchburn, R.G., Graham, I.J. (2001) 32Si dating of marine sediments from Bangladesh. Radiocarbon 43(2B), 909–916.

    Google Scholar 

  • Morgenstern, U., Taylor, C.B., Parrat, Y., Gäggeler, H.W., Eichler, B., (1996) 32Si in precipitation: Evaluation of temporal and spatial variation and as dating tool for glacial ice. Earth Planet. Sci. Lett. 144, 289–296.

    Article  Google Scholar 

  • Moser, H., Rauert, W. (1983) Determination of groundwater movement by means of environmental isotopes-State of the art. Relation of Groundwater Quantity and Quality (Proc. IAHS Symp.) XVIII IUGG Assembly, Hamburg, 1–30.

    Google Scholar 

  • Münnich, K.O., Roether, W., Thilo, L. (1967) Dating of groundwater with tritium and 14C. Isotopes in Hydrology. IAEA, Vienna 305–320.

    Google Scholar 

  • Nelms, D.L., Harlow, G.E., Jr., Plummer, L.N., and Busenberg, E. (2003) Aquifer susceptibility in Virginia, 1998–2000. U.S. Geological Survey, Water-Resources Investigations Report 03-4278, 58p.

    Google Scholar 

  • Oster, H., Sonntag, C., Münnich, K.O. (1996) Groundwater age dating with chlorofluorocarbons. Water Resour. Res. 32(10), 2989–3001.

    Article  Google Scholar 

  • Ozyurt, N.N., Bayari, C.S. (2003) LUMPED: a Visual Basic code of lumped-parameter models for mean residence time analyses of groundwater systems. Computers and Geosciences 29, 79–90.

    Article  Google Scholar 

  • Plummer, L. N., Busenberg, E. (2000) Chlorofluorocarbons. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A.L. Herczeg, Eds) Kluwer Academic Publishers, Boston 441–478.

    Google Scholar 

  • Plummer, L. N., Rupert, M. G., Busenberg, E., Schlosser, P. (2000) Age of irrigation water in groundwater from the Snake River Plain aquifer, South-Central Idaho. Ground Water 38, 264–283.

    Article  Google Scholar 

  • Plummer, L.N., Busenberg, E., Böhlke, J. K., Nelms, D. L., Michel, R. L., Schlosser, P. (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, U.S.: A multitracer approach. Chem. Geol. 179, 93–111.

    Article  Google Scholar 

  • Plummer, L.N., McConnell, J.B., Busenberg, E., Drenkard, S., Schlosser, P., Michel, R.L. (1998a) Flow of river water into a karstic limestone aquifer-1. Tracing the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia. Applied Geochem. 13(8), 995–1015.

    Google Scholar 

  • Plummer, L.N., Busenberg, E., Drenkard, S., Schlosser, P., McConnell, J.B., Michel, R.L., Ekwurzel, B., Weppernig, R. (1998b) Flow of river water into a karstic limestone aquifer-2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia. Applied Geochem. 13(8), 1017–1043.

    Google Scholar 

  • Plummer, L.N., Michel, R.L., Thurman, E.M., Glynn, P.D. (1993) Environmental tracers for age-dating young ground water. Regional Ground-water Quality (W.M. Alley, Ed.) Van Nostrand Reinhold, New York, 255–294.

    Google Scholar 

  • Poreda, R.J., Cerling, T.E., Solomon, D.K. (1988) Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J. Hydrol. 103(1/2), 1–9.

    Google Scholar 

  • Rademacher, L.K., Clark, J.F., Hudson, G.B., Erman, D.C., Erman, N.A. (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Neveda County, California. Chem. Geol. 179, 37–51.

    Article  Google Scholar 

  • Randall, J.H., Schultz, T.R., Davis, S.N. (1977) Suitability of Fluorocarbons as Tracers in Groundwater Resources Evaluation. Technical report to Office of Water Research and Technology, NTIS PB 277 488, 37 p.

    Google Scholar 

  • Randall, J.H., Shultz, T.R. (1976) Chlorofluorocarbons as hydrologic tracers: A new technology. Hydrology Water Resources Arizona Southwest 6, 189–95.

    Google Scholar 

  • Reilly, T.E., Plummer, L.N., Phillips, P.J., Busenberg, E. (1994) Estimation and corroboration of shallow ground-water flow paths and travel times by environmental tracer and hydraulic analyses — A case study near Locust Grove, Maryland. Water Resour. Res. 30(2), 421–433.

    Article  Google Scholar 

  • Roether, W. (1967) Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to central European surface waters. Isotopes in Hydrology. IAEA, Vienna, 73–91.

    Google Scholar 

  • Rozanski, K., Florkowski, T. (1979) Krypton-85 dating of groundwater. Isotope Hydrology 1978 (Proc. Symp. Vienna, 1978) IAEA, Vienna, 949–961.

    Google Scholar 

  • Rozanski, K., Gonfiantini, R., Araguas-Araguas, L. (1991) Tritium in the global atmosphere: Distribution patterns and recent trends. Journal of Physics G: Nuclear and Particle Physics 17, S523–S536.

    Article  Google Scholar 

  • Rozanski, K. (1979) Krypton-85 in the atmosphere 1950–1977, A data review. Environ. Int. 2 139–143.

    Google Scholar 

  • Salvamoser, J. (1984) Krypton-85 for groundwater dating. Isotope Hydrology 1983. IAEA, Vienna, 831–832.

    Google Scholar 

  • Schlosser, P. (1992) Tritium/3He dating of waters in natural systems. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Vienna, 1989) IAEA, Vienna 123–145.

    Google Scholar 

  • Schlosser, P., Shapiro, S.D., Stute, M., Aeschbach-Hertig, W., Plummer, N., Busenberg, E. (1998) Tritium/3He measurements in young groundwater— chronologies for environmental records. Isotope Techniques in the Study of Environmental Changes. IAEA, Vienna, 165–189.

    Google Scholar 

  • Schlosser, P., Stute, M., Doerr, H., Sonntag, C., Münnich, K. O. (1988) Tritium/3He dating of shallow groundwater. Earth Planet. Sci. Lett. 89, 353–362.

    Article  Google Scholar 

  • Schlosser, P., Stute, M., Doerr, H., Sonntag, C., Münnich, K. O. (1989) Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256.

    Article  Google Scholar 

  • Schultz, T.R., Randall, J.H., Wilson, L.G., Davis, S.N. (1976) Tracing sewage effluent recharge-Tucson, Arizona. Ground Water 14, 463–470.

    Google Scholar 

  • Schultz, T. R. (1979). Trichlorofluoromethane as a ground-water tracer for finite-state models, PhD Dissertation, University of Arizona.

    Google Scholar 

  • Shapiro, A.M. (2002) Cautions and suggestions for geochemical sampling in fractured rock. Ground Water Monitoring and Remediation 22(3) 151–164.

    Google Scholar 

  • Shapiro, S.D., LeBlanc, D., Schlosser, P., Ludin, A. (1999) Characterizing a sewage plume using the 3H-3He dating technique. Ground Water 37(6), 861–878.

    Article  Google Scholar 

  • Shapiro, S.D., Rowe, G., Schlosser, P., Ludin, A., Stute, M. (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour. Res. 34(5), 1165–1180.

    Article  Google Scholar 

  • Sheets, R.A., Bair, E.S., Rowe, G.L. (1998) Use of 3H/3He ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Resour. Res. 34(5), 1077–1089.

    Article  Google Scholar 

  • Smethie, W. M. Jr., Solomon, D. K., Schiff, S.L., Mathieu, G. (1992) Tracing groundwater flow in the Bordon aquifer using Krypton-85. J. Hydrol. 130, 279–297.

    Article  Google Scholar 

  • Smethie, W.M. Jr., Mathieu, G. (1986) Measurement of krypton-85 in the ocean. Marine Chem. 18, 17–33.

    Article  Google Scholar 

  • Solomon D.K., Schiff S.L., Poreda R.J., Clark W.B. (1993) A validation of the 3H/3He method for determining groundwater recharge. Water Resour. Res. 29(9), 2951–2962.

    Article  Google Scholar 

  • Solomon, D. K., Poreda, R. J., Schiff, S. L., Cherry, J. A. (1992) Tritium and helium 3 as groundwater age tracers in the Borden aquifer. Water Resour. Res. 28(3), 741–755.

    Article  Google Scholar 

  • Solomon, D. K., Sudicky, E. A. (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour. Res. 27(9), 2309–2319.

    Article  Google Scholar 

  • Solomon, D.K. (2000) 4He in groundwater. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A.L. Herczeg, Eds) Kluwer Academic Press, 425–439.

    Google Scholar 

  • Solomon, D.K., Hunt, A., Poreda, R.J. (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour. Res. 32(6), 1805–1813.

    Article  Google Scholar 

  • Solomon, D.K., Cook, P.G. (2000) 3H and 3He. Environmental Tracers in Subsurface Hydrology (P.G. Cook, A.L. Herczeg, Eds) Kluwer Academic Press, Amsterdam, 397–424.

    Google Scholar 

  • Solomon, D.K., Poreda, R.J., Cook, P.G., Hunt, A. (1996) Site characterization using 3H/3He groundwater ages, Cape Cod, MA. Ground Water 33(6), 988–996.

    Google Scholar 

  • Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G. (1995) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379–383.

    Google Scholar 

  • Stute, M., Sonntag, C., Deak, J., Schlosser, P. (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: Flow dynamics and crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 56, 2051–2067.

    Article  Google Scholar 

  • Sueker, J.K., Turk, J.T., Michel, R.L. (1992) Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range. Geomorph. 27, 61–74.

    Google Scholar 

  • Szabo, Z., Rice, D.E., Plummer, L.N., Busenberg, E., Drenkard, S., Schlosser, P. (1996) Age-dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour. Res. 32(4), 1023–1038.

    Article  Google Scholar 

  • Takaoka, N., Mizutani, Y. (1987) Tritiogenic 3He in groundwater in Takaoka. Applied Geochem. 85, 74–78.

    Google Scholar 

  • Talma, A. S., Weaver, J. M. C., Plummer, L. N., Busenberg, E. (2000) CFC tracing of groundwater in fractured rock aided with 14C and 3H to identify water mixing. Ground Water: Past Achievements and Future Challenges (O. Sililo, Ed) Balkema, Rotterdam, 635–640.

    Google Scholar 

  • Tanaka, N., Turekian, K.K. (1995) Determination of the dry deposition flux of SO2 using cosmogenic 35S and 7Be measurements. J. Geophys. Res. 100(D2), 2841–2848.

    Article  Google Scholar 

  • Thatcher, L.L. (1962) The distribution of tritium fallout in precipitation over North America. International Association of Scientific Hydrology VII, No. 2, 48–58.

    Google Scholar 

  • Thompson, G.M., Hayes, J.M., Davis, S.N. (1974) Fluorocarbon tracers in hydrology. Geophys. Res. Lett. 1, 177–180.

    Google Scholar 

  • Thompson, G.M., Hayes, J.M. (1979) Trichlorofluoromethane in groundwater: A possible tracer and indicator of groundwater age. Water Resour. Res. 15, 546–554.

    Google Scholar 

  • Thompson, G.M. (1976) Trichloromethane: A New Hydrologic Tool for Tracing and Dating Groundwater, PhD Dissertation, Dept. of Geology, Indiana Univ., Bloomington, Indiana, 93 p.

    Google Scholar 

  • Thonnard, N., McKay, L.D., Cumbie, D.H., Joyner, C.P. (1997) Status of laser-based krypton-85 analysis development for dating of young groundwater (abstract). Annual Meeting, Abstracts and Programs. Geological Society of America, 29(6), 78.

    Google Scholar 

  • Thorstenson, D.C., Weeks, E.P., Haas, H., Busenberg, E., Plummer, L.N., Peters, C.A. (1998) Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain. Water Resour. Res. 34(6), 1507–1529.

    Article  Google Scholar 

  • Tolstikhin, I.N., Kamensky, I.L. (1969) Determination of groundwater ages by the T-3He method. Geochemistry International 6, 810–11.

    Google Scholar 

  • Torgersen, T., Clarke, W. B., Jenkins, W. J. (1979) The tritium-helium-3 method in hydrology. Isotope Hydrology 1978 (Proc. Symp. Vienna, 1978) IAEA, Vienna, 917–930.

    Google Scholar 

  • Torgersen, T. (1980) Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/Rn ages. J. Geochem. Explor. 13, 57–75.

    Article  Google Scholar 

  • Torgersen, T., Ivey, G.N. (1985) Helium accumulation in groundwater, 2: A model for the accumulation of the crustal 4He degassing flux. Geochim. Cosmochim. Acta 49, 2445–2452.

    Google Scholar 

  • Torgersen, T., Top, Z., Clarke, W. B., Jenkins, W. J., Broecker, W. S. (1977) A new method for physical limnology-tritium-helium-3 ages — Results for lakes Erie, Huron, and Ontario. Limnol. Oceanogr. 22, 181–193.

    Article  Google Scholar 

  • Vogel, J.C. (1967) Investigation of groundwater flow with Radiocarbon. Isotopes in Hydrology. IAEA, Vienna, 355–369.

    Google Scholar 

  • Von Buttlar, H., Libby, W.F. (1955) Natural distribution of cosmic-ray-produced tritium. J. Inorg. Nucl. Chem. 1, 75–91.

    Google Scholar 

  • Vulava, V.M., Perry, E.B., Romanek, C.S., Seaman, J.C. (2002) Dissolved gases as partitioning tracers for determination of hydrogeological parameters. Environ. Sci. Technol. 36, 254–262.

    Article  Google Scholar 

  • Warner, M. J., Weiss, R. F. (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. 32, 1485–1497.

    Article  Google Scholar 

  • Weaver, J.M.C., Talma, A.S. (1999) Field studies of Chlorofluorocarbons (CFCs) as a Groundwater Dating Tool in Fractured Rock Aquifers. Report to the Water Research Commission, Division of Water, Environment and Forestry Technology, CSIR, Stellenbosch, South Africa, WRC Project No 731/1/99.

    Google Scholar 

  • Weise, S., Eichinger, L., Forster, M., Salvamoser, J. (1992) Helium-3 and krypton-85 dating of shallow groundwaters — Diffusive loss and correlated problems. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 147–162.

    Google Scholar 

  • Weise, S.M., Moser, H. (1992) Groundwater dating with helium isotopes. Isotope Techniques in Water Resource Development. IAEA, Vienna, 105–26.

    Google Scholar 

  • Weiss, W., Sartorius, H., Stockburger, H. (1992) Global distribution of atmospheric 85Kr. A database for the verification of transport and mixing models. Isotopes of Noble Gases as Tracers in Environmental Studies (Proc. Consultants Meeting) IAEA, Vienna, 29–62.

    Google Scholar 

  • Weiss, W., Sittkus, A., Stockburger, H., Sartorius, H. (1983) Large-scale atmospheric mixing derived from meridional profiles of krypton-85. J. Geophys. Res. 88, 8574–8578.

    Google Scholar 

  • Yurtsever, Y. (1983) Models for tracer data analysis. Guidebook on Nuclear Techniques in Hydrology, 1983 Edition. Technical Reports Series 91, IAEA, Vienna, 381–402.

    Google Scholar 

  • Zimmermann, P.H., Feichter, J., Rath, H.K., Crutzen, P.J., Weiss, W. (1989) A global three-dimensional source-receptor model investigation using 85Kr, Atmospheric Environment 23(1), 25–35.

    Google Scholar 

  • Zoellmann, K., Kinzelbach, W., Fulda, C. (2001a) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J. Hydrol. 240, 187–205.

    Article  Google Scholar 

  • Zoellmann, K., Kinzelbach, W., Aeschbach-Hertig, W. (2001) BOX model: Evaluating Environmental Tracer Data by the Box Model Approach. Accessible at: http://www.baum.ethz.ch/ihw/boxmodel_en.html.

    Google Scholar 

  • Zuber, A. (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. Handbook of Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment, B (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, New York, N.Y. 1–59.

    Google Scholar 

  • Zuber, A. (1994) On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Mathematical Models and their Applications to Isotope Studies in Groundwater Hydrology. IAEA-TECDOC-777, IAEA, Vienna, 11–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Plummer, L. (2005). Dating of Young Groundwater. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_14

Download citation

Publish with us

Policies and ethics