Advertisement

Scanning Probe Microscopy of Piezoelectric and Transport Phenomena in Electroceramic Materials

  • S.V. Kalinin
  • D.A. Bonnell
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)

Keywords

Piezoresponse Force Microscop Lateral Bias Electrostatic Force Microscop Electroceramic Material Surface Topo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hench, L.L. and West, J.K., Eds. (1990) Principles of electronic ceramics, Wiley Interscience, New York.Google Scholar
  2. 2.
    Buchanan, R., Ed. (1991) Ceramic materials for electronics, Marcel Dekker Inc., New York.Google Scholar
  3. 3.
    Levinson, L.M., Ed. (1988) Electronic Ceramics: Properties, Devices and Applications, Marcel Dekker Inc., New York.Google Scholar
  4. 4.
    Sutton, A.P. and Ballufi, R.A. (1995) Interfaces in Crystalline Materials, Oxford University Press, Oxford.Google Scholar
  5. 5.
    Balcells, L.L., Fontcuberta, J., Martinez, B., and Obradors, X. (1998) Magnetic surface effects and low-temperature magnetoresistance in manganese perovskites, J. Phys. C 10, 1883–1890.Google Scholar
  6. 6.
    Ziese, M. (2002) Extrinsic magnetotransport phenomena in ferromagnetic oxides, Rep. Prog. Phys. 65, 143–249.CrossRefADSGoogle Scholar
  7. 7.
    Sun, J.Z. and Gupta, A. (1998) Spin-dependent transport and low-field magnetoresistance in doped manganites, Annu. Rev. Mat. Sci. 28, 45–78.CrossRefADSGoogle Scholar
  8. 8.
    Hilgenkamp, H. and Mannhart, J. (2002) Grain boundaries in high-T-c superconductors, Rev. Mod. Phys. 74, 485–549.CrossRefADSGoogle Scholar
  9. 9.
    Huybrechts, B., Ishizaki, K., and Takata, M. (1995) The positive-temperature coefficient of resistivity in barium-titanate, J. Mat. Sci. 30, 2463–2474.CrossRefADSGoogle Scholar
  10. 10.
    Amin, A., and Newnham, R.E. (1992) Thermistors, Key Eng. Mater. 66&67, 339–373.CrossRefGoogle Scholar
  11. 11.
    Desu, S.B. (1992) Interfacial effects in perovskites, Key. Eng. Mater. 66&67, 375–420.CrossRefGoogle Scholar
  12. 12.
    Lines, M.E. and Glass, A.M. (1977) Principles and Applications of Ferroelectric and Related Materials, Clarendon Press, Oxford.Google Scholar
  13. 13.
    Setter, N. and Colla, E.L., Eds. (1993) Ferroelectric Ceramics, Birkhauser Verlag, Basel.Google Scholar
  14. 14.
    Jaffe, B. Cook Jr., W.R., and Jaffe, H. (1971) Piezoelectric Ceramics, Academic Press, New York.Google Scholar
  15. 15.
    Kalinin, S.V. and Bonnell, D.A. (2001) Scanning impedance microscopy of electroactive interfaces, Appl. Phys. Lett. 78, 1306–1308.CrossRefADSGoogle Scholar
  16. 16.
    Kalinin, S.V. and Bonnell, D.A. (2001) Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411.ADSGoogle Scholar
  17. 17.
    Kalinin, S.V., Suchomel, M.R., Davies, P.K., and Bonnell, D.A. (2002) Potential and impedance Imaging of polycrystalline BiFeO3 ceramics, J. Am. Ceram. Soc. 85, 3011–3017.CrossRefGoogle Scholar
  18. 18.
    Kalinin, S.V. and Bonnell, D.A. (2002) Scanning impedance microscopy of an active Schottky barrier diode, J. Appl. Phys. 91, 832–839.CrossRefADSGoogle Scholar
  19. 19.
    Macdonald, J.R., Ed. (1987) Impedance Microscopy: Emphasizing Solid Materials and Systems, John Wiley, New York.Google Scholar
  20. 20.
    Blatter, G. and Greuter, F. (1986) Carrier Transport Through Grain-Boundaries in Semiconductors, Phys. Rev. B 33, 3952–3966.ADSGoogle Scholar
  21. 21.
    Kalinin, S.V. (2002) Nanoscale Electric Phenomena at Oxide Surfaces and Interfaces by Scanning Probe Microscopy, Ph.D. Thesis, University of Pennsylvania, Philadelphia.Google Scholar
  22. 22.
    Shao, R., Kalinin, S.V., and Bonnell, D.A. (2003) Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett. 82, 1869–1871.CrossRefADSGoogle Scholar
  23. 23.
    Browning, N.D., Buban, J.P., Moltaji, H.O., Pennycook, S.J., Duscher, G., Johnson, K.D., Rodrigues, R.P., and Dravid, V.P. (1999) The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3, Appl. Phys. Lett. 74, 2638–2640.CrossRefADSGoogle Scholar
  24. 24.
    Command reference manual, Digital Instruments (1997).Google Scholar
  25. 25.
    McDaniel, E.B., McClain, S.C., and Hsu, J.W. P. (1988) Nanometer scale polarimetry studies using a near-field scanning optical microscope, Appl. Optics 37, 84–92.ADSCrossRefGoogle Scholar
  26. 26.
    Kalinin, S.V. and Bonnell, D.A. (2000) Surface potential at surface-interface junctions in SrTiO3 bicrystals, Phys. Rev. B 62, 10419–10430.ADSGoogle Scholar
  27. 27.
    Kalinin, S.V., Duscher, G., and Bonnell, D.A. to be published.Google Scholar
  28. 28.
    Domansky, K., Leng, Y., Williams, C.C., Janata, J., and Petelenz, D. (1993) Mapping of Mobile Charges on Insulator Surfaces with the Electrostatic Force Microscope, Appl. Phys. Lett. 63, 1513–1515.CrossRefADSGoogle Scholar
  29. 29.
    Kalinin, S.V., Freitag, M. Johnson, A.T., and Bonnell, D.A. (2002) Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies, Appl. Phys. Lett. 81, 754–756.CrossRefADSGoogle Scholar
  30. 30.
    Kalinin, S.V., Johnson, C.Y., and Bonnell, D.A. (2002) Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface, J. Appl. Phys. 91, 3816–3823.CrossRefADSGoogle Scholar
  31. 31.
    Johnson, K.D. and Dravid, V.P. (2000) Static and dynamic electron holography of electrically active grain boundaries in SrTiO3, Interface Science 8, 189–198.CrossRefGoogle Scholar
  32. 32.
    Popov, G., Kalinin, S.V., Alvarez, T., Emge, T.J., Greenblatt, M., and Bonnell, D.A. (2002) Micromagnetic and magnetoresistance studies of ferromagnetic La0.83Sr0.13MnO2.98 crystals, Phys. Rev. B 65, 064426.ADSGoogle Scholar
  33. 33.
    Verghese, P.M. and Clarke, D.R. (2000) Piezoelectric contributions to the electrical behavior of ZnO varistors, J. Appl. Phys. 87, 4430–4438.CrossRefADSGoogle Scholar
  34. 34.
    Fleig, J. (2002) The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data, Solid State Ionics 150, 181–193.CrossRefGoogle Scholar
  35. 35.
    Rodewald, S., Fleig, J., and Maier, J. (2001) The distribution of grain boundary resistivities in SrTiO3 polycrystals: a comparison between spatially resolved and macroscopic measurements, J. Eur. Ceram. Soc. 21, 1749–1752.CrossRefGoogle Scholar
  36. 36.
    Fischer, P., Polomska, M., Sosnowska, I., and Szymanski, M. (1980) Temperature Dependence of the Crystal and Magnetic Structures of BiFeO3, J. Phys. C 13, 1931–1940.ADSGoogle Scholar
  37. 37.
    Mahesh Kumar, M., Srinivas, A., Suryanarayana, S.V., and Bhimasankaram, T. (1988) Dielectric and impedance studies on BiFeO3-BaTiO3 solid solutions, Phys. Stat. Sol. A 165, 317–326.ADSGoogle Scholar
  38. 38.
    Polomska, M., Kaczmarek, W., and Pajak, Z. (1974) Electric and Magnetic Properties of Bi1−xLaxFeO3 Solid Solutions, Phys. Stat. Sol. A 23, 567–574.CrossRefADSGoogle Scholar
  39. 39.
    MacChesney, J.B., Jetzt, J.J., Potter, J.F., Williams, H.J., and Sherwood, R.C. (1966) Electrical and Magnetic Properties of System SrFeO3 — BiFeO3, J. Am. Ceram. Soc. 49, 644.CrossRefGoogle Scholar
  40. 40.
    Borisevich, A.Y., Kalinin, S.V., Bonnell, D.A., and Davies, P.K. (2001) Analysis of phase distributions in the Li2O-Nb2O5-TiO2 system by piezoresponse imaging, J. Mater. Res. 16, 329–332.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • S.V. Kalinin
    • 1
  • D.A. Bonnell
    • 2
  1. 1.Condensed Matter Sciences DivisionOak Ridge National LaboratoryOak Ridge
  2. 2.Department of Materials Science and EngineeringThe University of PennsylvaniaPhiladelphia

Personalised recommendations