Expanding the Capabilities of the Scanning Tunneling Microscope

  • K.F. Kelly
  • Z.J. Donhauser
  • B.A. Mantooth
  • P.S. Weiss
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


Scanning probe microscopes allow unprecedented views of surfaces and the site-specific interactions and dynamics of adsorbates. Our efforts to identify and to characterize atoms and molecules on surfaces and how it is that the scanning tunneling microscope images these surfaces and adsorbates will be discussed. We have extended the capabilities of scanning probe microscopes in several ways; two in particular will be highlighted. In the first section, recent advances in tunable microwave frequency scanning tunneling microscopy (STM) allow dopant profiling at unprecedented resolution will be presented. We apply nonlinear tunable microwave frequency scanning tunneling microscopy and spectroscopy to profiling dopants at ultrahigh resolution in semiconductors that is sensitive to both dopant type and density. We are then able to use a spectroscopic imaging mode to map the dopant density at the atomic scale. In the second part of this chapter, advanced image processing techniques that extend the scientific capabilities of STM will be presented. A digital image tracking algorithm based on Fourier-transform crosscorrelation has been developed to correct for instrumental drift in scanning tunneling microscope images. This tracking algorithm was used to monitor conductance changes associated with different conformations in conjugated switching molecules and to trace the diffusion of individual benzene molecules on silver.


Dopant Profile Drift Track Scanning Capacitance Microscope Trac King Switch Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kochanski, G.P. (1989) Nonlinear Alternating-Current Tunneling Microscopy, Phys. Rev. Lett. 62, 2285–2288.CrossRefADSGoogle Scholar
  2. 2.
    Michel, B., Mizutani, W., Schierle, R., Jarosch, A., Knop, W., Benedikter, H, Bachtold, W., and Rohrer, H. (1992) Scanning Surface Harmonic Microscopy — Scanning Probe Microscopy Based on Microwave Field-Induced Harmonic-Generation, Rev. Sci. Instrum. 63, 4080–4085.CrossRefADSGoogle Scholar
  3. 3.
    Seifert, W., Gerner, E., Stachel, M., and Dransfeld, K. (1992) Scanning Tunneling Microscopy at Microwave-Frequencies, Ultramicroscopy 42–44, 379–387.CrossRefGoogle Scholar
  4. 4.
    Stranick, S.J. and Weiss, P.S. (1993) A Versatile Microwave Frequency-Compatible Scanning Tunneling Microscope, Rev. Sci. Instrum. 64, 1232–1234.CrossRefADSGoogle Scholar
  5. 5.
    Stranick, S.J., Weiss, P.S., Parikh, A.N., and Allara, D.L. (1993) Alternating Current Scanning Tunneling Spectroscopy of Self-Assembled Monolayers on Gold, J. Vac. Sci. Technol. A 11, 739–741.ADSGoogle Scholar
  6. 6.
    Bourgoin, J.P., Johnson, M.B., and Michel, B. (1994) Semiconductor Characterization with the Scanning Surface Harmonic Microscope, Appl. Phys. Lett. 65, 2045–2047.CrossRefADSGoogle Scholar
  7. 7.
    Stranick, S.J. and Weiss, P.S. (1994) A Tunable Microwave Frequency Alternating Current Scanning Tunneling Microscope, Rev. Sci. Instrum. 65, 918–921.CrossRefADSGoogle Scholar
  8. 8.
    Stranick, S.J. and Weiss, P.S. (1994) Alternating Current Scanning Tunneling Microscopy and Nonlinear Spectroscopy, J. Phys. Chem. 98, 1762–1764.CrossRefGoogle Scholar
  9. 9.
    Stranick, S.J., Kamna, M.M., and Weiss, P.S. (1994) A Low Temperature, Ultrahigh Vacuum, Microwave-Frequency-Compatible Scanning Tunneling Microscope, Rev. Sci. Instrum. 65, 3211–3215.CrossRefADSGoogle Scholar
  10. 10.
    Stranick, S.J., Bumm, L.A., Kamna, M.M., and Weiss, P.S. (1995) Linear and Nonlinear Spectroscopy with the Tunable AC Scanning Tunneling Microscope in O. Marti and R. Mijller (eds.), Photons and Local Probes, NATO ASI Series E: Appl. Sci., Kluwer, Dordrecht.Google Scholar
  11. 11.
    The &quote;2001 International Technology Roadmap for Semiconductors&quote; can be found at the URL: Scholar
  12. 12.
    Kopanski, J.J., Marchiando, J.F., and Lowney, J.R. (1997) Scanning Capacitance Microscopy Applied to Two-Dimensional Dopant Profiling of Semiconductors, Mat. Sci. Eng. B 44, 46–51.Google Scholar
  13. 13.
    Lanyi, S., Torok, J., and Rehurek, P. (1994) A Novel Capacitance Microscope, Rev. Sci. Instrum. 65, 2258–2261.CrossRefADSGoogle Scholar
  14. 14.
    Neubauer, G., Erickson, A., Williams, C.C., Kopanski, J.J., Rodgers, M., and Adderton, D. (1996) Two-Dimensional Scanning Capacitance Microscopy Measurements of Cross-Sectioned Very Large Scale Integration Test Structures, J. Vac. Sci. Technol. B 14, 426–432.Google Scholar
  15. 15.
    Williams, C.C., Hough, W.P., and Rishton, S. A. (1989) Scanning Capacitance Microscopy on a 25 nm Scale, Appl. Phys. Lett. 55, 203–205.CrossRefADSGoogle Scholar
  16. 16.
    Marchiando, J.F., Kopanski, J.J., and Lowney, J.R. (1998) Model Database for Determining Dopant Profiles from Scanning Capacitance Microscope Measurements, J. Vac. Sci. Technol. B 16, 463–470.Google Scholar
  17. 17.
    Kopanski, J.J. and Mayo, S. (1998) Intermittent-Contact Scanning Capacitance Microscope for Lithographic Overlay Measurement, Appl. Phys. Lett. 19, 2469–2471.CrossRefADSGoogle Scholar
  18. 18.
    Kopanski, J.J., Marchiando, J.F., and Rennex, B.G. (2000) Carrier Concentration Dependence of the Scanning Capacitance Microscopy Signal in the Vicinity of pn Junctions, J. Vac. Sci. Technol. B 18, 409–413.Google Scholar
  19. 19.
    Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L.II, Allara, D.L., Tour, J.M., and Weiss, P.S. (1996) Are Single Molecular Wires Conducting?, Science 271, 1705–1707.ADSCrossRefGoogle Scholar
  20. 20.
    Cygan, M.T, Dunbar, T.D., Arnold, J.J., Bumm, L.A., Shedlock, N.F., Burgin, T.P., Jones, L.II, Allara, D.L., Tour, J.M., and Weiss, P.S. (1998) Insertion, Conductivity, and Structures of Conjugated Organic Oligomers in Self-Assembled Alkanethiol Monolayers on Au{111}, J. Am. Chem. Soc. 120, 2721–2732.CrossRefGoogle Scholar
  21. 21.
    Weiss, P.S, Bumm, L.A., Dunbar, T.D., Burgin, T.P., Tour, J.M., and Allara, D.L. (1998) Probing Electronic Properties of Conjugated and Saturated Molecules in Self-Assembled Monolayers, Ann. N. Y. Acad. Sci. 852, 145–168.CrossRefADSGoogle Scholar
  22. 22.
    Schmidt, J., Rapoport, D.H., Behme, G., and Frohlich, H.J. (1999) Microwave-Mixing Scanning Capacitance Microscopy of pn Junctions J. Appl. Phys. 86, 7094–7099.CrossRefADSGoogle Scholar
  23. 23.
    Donhauser, Z.J., McCarty, G.S., Bumm, L.A., and Weiss, P.S. (2001) High Resolution Dopant Profiling Using a Tunable AC Scanning Tunneling Microscope, Characterization and Metrology for ULSI Technology: 2000 International Conference, 641–646.Google Scholar
  24. 24.
    Jorgensen, J.F. Madsen, L.L., Garnaes, J., et al. (1994) Calibration, Drift Elimination, and Molecular-Structure Analysis J. Vac. Sci. Technol. B 12, 1698–1701.Google Scholar
  25. 25.
    Jorgensen, J.F, Carneiro, K., Madsen, L.L., and Conradsen, K. (1994) Hysteresis Correction of Scanning Tunneling Microscope Images, J. Vac. Sci. Technol. B 12, 1702–1704.Google Scholar
  26. 26.
    Supplemental material: An example set of movies demonstrating drift and image extraction can be found at Scholar
  27. 27.
    Pohl, D.W. and Moller, R. (1988) Tracking Tunneling Microscopy, Rev. Sci. Instrum. 59, 840–842.CrossRefADSGoogle Scholar
  28. 28.
    Aketagawa, M., Takada, K., Minao, Y., Oka, Y., and Lee, J.D. (1999) Tracking and Stepping Control of the Tip Position of a Scanning Tunneling Microscope by Referring to Atomic Points and Arrays on a Regular Crystalline Surface, Rev. Sci. Instrum. 70, 2053–2059.CrossRefADSGoogle Scholar
  29. 29.
    Swartzentruber, B.S. (1996) Direct Measurement of Surface Diffusion Using Atom-tracking Scanning Tunneling Microscopy, Phys. Rev. Lett. 76, 459–462.CrossRefADSGoogle Scholar
  30. 30.
    Lauhon, L.J. and Ho, W. (1999) Single Molecule Thermal Rotation and Diffusion: Acetylene on Cu(001), J. Chem. Phys. 111, 5633–5636.CrossRefADSGoogle Scholar
  31. 31.
    Renisch, S., Schuster, R., Wintterlin, J., and Ertl G. (1999) Dynamics of Adatom Motion under the Influence of Mutual Interactions: O/Ru(0001), Phys. Rev. Lett. 82, 3839–3842.CrossRefADSGoogle Scholar
  32. 32.
    Tziritas, G. and Labit, C. (1994) Motion Analysis for Image Sequence Coding, Elsevier Science B. V., New York.Google Scholar
  33. 33.
    Stiller, C. and Konrad, J. (1999) Estimating Motion in Image Sequences — A Tutorial on Modelling and Computation of 2D Motion, IEEE Signal Process. Mag. 16, 70–91.CrossRefADSGoogle Scholar
  34. 34.
    Lewis, J.P., Industrial Light & Magic,;zilla/Papers/nvisionInterface/nip.htmlGoogle Scholar
  35. 35.
    Barnea, D.I. and Silverman, H.F. (1972) IEEE Trans. Comput. 21, 179.zbMATHCrossRefGoogle Scholar
  36. 36.
    Handbook of Image and Video Processing (2000), edited by A. Bovik Academic, San Diego, CA.Google Scholar
  37. 37.
    Lockwood, W.D. and Reynolds, A.P. (1999) Use and Verification of Digital Image Correlation for Automated 3-D Surface Characterization in the Scanning Electron Microscope, Mater. Charact. 42, 123–134.CrossRefGoogle Scholar
  38. 38.
    van Noort, S.J.T., van der Werf, K.O., de Grooth, B.G., and Greve, J. (1999) High Speed Atomic Force Microscopy of Biomolecules by Image Tracking, Biophys. J. 77, 2295–2303.CrossRefGoogle Scholar
  39. 39.
    Romer, J., Plaschke, M., and Kim, J.I. (2000) Alignment of AFM Images Using an Iterative Mathematical Procedure 85, 99–105.Google Scholar
  40. 40.
    Rosolen, G.C. and King, W.D. (1998) An Automated Image Alignment System for the Scanning Electron Microscope, Scanning 20, 495–500.CrossRefGoogle Scholar
  41. 41.
    Bumm, L.A. and Weiss, P.S. (1995) Small Cavity Nonresonant Tunable Microwave-Frequency Alternating-Current Scanning Tunneling Microscope, Rev. Sci. Instrum. 66, 4140–4145.CrossRefADSGoogle Scholar
  42. 42.
    Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Allara, D.L., Tour, J.M., and Weiss, P.S. (2001) Conductance Switching in Single Molecules through Conformational Changes, Science 292, 2303–2307.CrossRefGoogle Scholar
  43. 43.
    Jackiw, J.J., Pascual, J.I., Mantooth, B.A, Weiss, P.S., and Rust, H.P. (in preparation).Google Scholar
  44. 44.
    Russ, J.C (1995) The Image Processing Handbook, 2nd ed., Chemical Rubber, Ann Arbor.Google Scholar
  45. 45.
    Zheng, Q.X. and Klewicki, J.C. (2000) A Fast Data Reduction Algorithm for Molecular Tagging Velocimetry: The Decoupled Spatial Correlation Technique, Meas. Sci. Technol. 11, 1282–1288.CrossRefADSGoogle Scholar
  46. 46.
    Huang, W.H., Wang, W.W., Xia, A.D., Jin, N., and Hu, Z.Q.J. (2000) Time-Stability Measurement and Compensation of a Scanning Probe Microscope Instrument, Vac. Sci. Technol. B 18, 2027–2029.CrossRefGoogle Scholar
  47. 47.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1986) Numerical Recipes, the Art of Scientific Computing, Cambridge University, Cambridge.zbMATHGoogle Scholar
  48. 49.
    Oppenheim, A.V. and Schafer, R.W. (1989) Discrete-Time Signal Processing, Prentice Hall, Englewood Cliffs, NJ, pp. 63–67, 447, 746–747, 839–842.zbMATHGoogle Scholar
  49. 50.
    The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.Google Scholar
  50. 51.
    Chen, J., Reed, M.A., Rawlett, A.M., and Tour, J.M. (1999) Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device, Science 286, 1550–1552.CrossRefGoogle Scholar
  51. 52.
    Chen, J., Wang, W., Reed, M.A., Rawlett, A.M., Price, D.W., and Tour, J.M. (2000) Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions, Appl. Phys. Lett. 77, 1224–1226.CrossRefADSGoogle Scholar
  52. 53.
    Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., and Tour, J.M. (2001) Molecular Random Access Memory Cell, Appl. Phys. Lett. 78, 3735–3737.CrossRefADSGoogle Scholar
  53. 54.
    Jackiw, J.J. (2001) Ph.D. Thesis Exploration of Nanoscale Structures and Properties, Pennsylvania State University.Google Scholar
  54. 55.
    Rust, H. P., Buisset, J., Schweizer, E.K., and Cramer, L. (1997) High Precision Mechanical Approach Mechanism for a Low Temperature Scanning Tunneling Microscope, Rev. Sci. Instrum. 68, 129–132.CrossRefADSGoogle Scholar
  55. 56.
    Briner, B. G., Doering, M., Rust, H. P., and Bradshaw, A. M. (1997) Microscopic Molecular Diffusion Enhanced by Adsorbate Interactions, Science 278, 257–260.CrossRefGoogle Scholar
  56. 57.
    Repp, J., Moresco, F., Meyer, G., Rieder, K.-H., Hyldgaard, P., and Persson, M. (2000) Substrate Mediated Long-Range Oscillatory Interaction Between Adatoms: Cu/Cu(111), Phys. Rev. Lett. 85, 2981–2984.CrossRefADSGoogle Scholar
  57. 58.
    Pedersen, M.O., Osterlund, L., Mortensen, J.J., Mavrikakis, M., Hansen, L.B., Stensgaard, I., Laegsgaard, E., Norskov, J.K., and Besenbacher, F. (2000) Diffusion of N Adatoms on the Fe(100) Surface, Phys. Rev. Lett. 84, 4898–4901.CrossRefADSGoogle Scholar
  58. 59.
    Osterlund, L., Pedersen, M.O., Stensgaard, I., Laegsgaard, E., and Besenbacher, F. (1999) Quantitative Determination of Adsorbate-Adsorbate Interactions, Phys. Rev. Lett. 83, 4812–4815.CrossRefADSGoogle Scholar
  59. 60.
    Qin, X.R., Swartzentruber, B.S., and Lagally, M.G. (2000) Diffusional Kinetics of SiGe Dimers on Si(100) Using Atom-Tracking Scanning Tunneling Microscopy, Phys. Rev. Lett. 85, 3660–3663.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • K.F. Kelly
    • 1
    • 2
  • Z.J. Donhauser
    • 1
  • B.A. Mantooth
    • 1
  • P.S. Weiss
    • 1
  1. 1.Departments of Chemistry and PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Electrical EngineeringRice UniversityHoustonUSA

Personalised recommendations