Nanoscale Electronic Measurements of Semiconductors Using Kelvin Probe Force Microscopy

  • Y. Rosenwaks
  • R. Shikler
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


As characteristic dimensions of semiconductor devices continue to shrink, the ability to characterize structure and electronic properties in such devices at the nanometer scale has come to be of outstanding importance.

The Kelvin probe force microscopy technique has already been demonstrated as a powerful tool for measuring electrostatic forces and electric potential distribution with nanometer resolution. In this review, we demonstrate several recent applications of this technique. We begin by reviewing the basics of the method and presenting the basic experimental setup. Section 2 presents measurements conducted on operating GaP light emitting diode. The operating device surface band structure was imaged with nanometer resolution, and it was shown that the surface band structure is governed by absorption of the internal light emission. We then demonstrate how the Kelvin probe force microscopy can be used for measuring minority-carrier diffusion length in semiconductors. It is shown that this method could be very useful in measuring very short diffusion lengths (< 1 µm). The last section focuses on the sensitivity and spatial resolution in semiconductor measurements. We present a framework that allows extracting the real surface potential taking into account the tip-sample electrostatic interaction. The model is compared to ultra high vacuum Kelvin probe force microscopy measurements of atomic steps on GaP.


Electrostatic Force Contact Potential Difference Minority Carrier Diffusion Length Probe Force Microscopy Surface Photovoltage Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nonenmacher, M., O'Boyle, M.P,. and Wickramasing H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923.CrossRefADSGoogle Scholar
  2. 2.
    Leng, Y., Williams, C.C., Su, L.C., and Stringfellow G.B. (1995) Atomic ordering of GaInP studied by Kelvin probe force microscopy, Appl. Phys. Lett. 66, 1264–1267.CrossRefADSGoogle Scholar
  3. 3.
    Kikukawa, A., Hosaka, S., and Imura R. (1995) Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy, Appl. Phys. Lett. 66, 3510–3512.CrossRefADSGoogle Scholar
  4. 4.
    Vatel, O. and Tanimoto M. (1995) Kelvin probe force microscopy for potential distribution measurement of semiconductor devices J. Appl. Phys. 77, 2358–2362.CrossRefADSGoogle Scholar
  5. 5.
    Chavez-Pirson, A., Vatel, O., Tanimoto, M., Ando, H., Iwamura, H., and Kanbe H. (1995) Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy, Appl. Phys. Lett. 67, 3069–3071.CrossRefADSGoogle Scholar
  6. 6.
    Mizutani, T., Arakawa, M., and Kishimoto, S. (1997) Two-dimensional potential profile measurement of GaAs HEMT's by Kelvin probe force microscopy, IEEE Elec. Dev. Lett. 18, 423–425; Arakawa, M., Kishimoto, S., and Mizutani, T. (1997) Kelvin probe force microscopy for potential distribution measurements of cleaved surface of GaAs devices, Jpn. J. Appl. Phys. 36, 1826–1829.CrossRefADSGoogle Scholar
  7. 7.
    Shikler, R., Fried, N., Meoded, T., and Rosenwaks, Y. (1999) Potential Imaging of Operating Light Emitting Devices using Kelvin Force Microscopy, Appl. Phys. Lett. 74, 2972–2974; Shikler, R., Meoded, T., Fried, N., Mishori, B., and Rosenwaks, Y. (1999) Two Dimensional Surface Band Structure of Operating Semiconductor Devices, J. Appl. Phys. 86, 107–113.CrossRefADSGoogle Scholar
  8. 8.
    Henning, A.K., Hochwitz, T., Slinkman, J., Never, J., Hoffman, S., Kaszuba, P., and Daghlian, C. (1995) Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy, J. Appl. Phys. 77, 1888–1896.CrossRefADSGoogle Scholar
  9. 9.
    Hudlet, S., Jean, M.S., Roulet, B., Berger, J., and Guthmann, C. (1995) Electrostatic forces between metallic tip and semiconductor surfaces, J. Appl. Phys. 59, 3308–3314.CrossRefADSGoogle Scholar
  10. 10.
    Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C., and Bhat, R. (1987) Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation, Appl. Phys. Lett. 51, 33–35.CrossRefADSGoogle Scholar
  11. 11.
    Mayergoyz, I.D. (1986) Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys. 59, 195–199.CrossRefADSGoogle Scholar
  12. 12.
    Gustafsson, A., Pistol, M.E., Montelius, L., and Samuelson, L. (1998) Local probe techniques for luminescence studies of low-dimensional semiconductor structures, J. Appl. Phys. 84, 1715–1775; Vertikov, A., Ozden, I., and Nurmiko A.V. (1999) Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy, Appl. Phys. Lett. 74, 850–852.CrossRefADSGoogle Scholar
  13. 13.
    Goodman, M. (1961) A method for the measurement of short minority carrier diffusion lengths in semicondutors, J. Appl. Phys. 32, 2550–2552.CrossRefADSGoogle Scholar
  14. 14.
    Markiewicz, P., and Goh, M.C. (1994) Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure, Langmuir 10, 5–7.CrossRefGoogle Scholar
  15. 15.
    Hochowitz, T., Henning, A.K., Levey, C., Daghlian, C., and Slinkman, J. (1996) Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes, J. Vac. Sci. Technol. B 14, 457–464.Google Scholar
  16. 16.
    Mayergoyz, I.D. (1986) Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys. 59, 195–199.CrossRefADSGoogle Scholar
  17. 17.
    Korman, C.E., and Mayergoyz, I.D. (1990) A globally convergent algorithm for the solution of the steady-state semiconductor device equations, J. Appl. Phys., 68, 1324–1334.CrossRefADSGoogle Scholar
  18. 18.
    Hudlet, S., Saint Jean, M., Roulet, B., Berger, J., and Guthmann, C. (1995) Electrostatic forces between metallic tip and semiconductor surfaces, J. Appl. Phys. 77, 3308–3314.CrossRefADSGoogle Scholar
  19. 19.
    Jacobs, H.O., Knapps, H.F., Muller, S., and Stemmer, A. (1997) Surface potential mapping: A qualitative material contrast in SPM, Ultramicroscopy 69, 39–49; Belaidi, S., Lebon, F., Girard, P., Leveque, G., and Pagano, S. (1998) Finite element simulations of the resolution in electrostatic force microscopy, Appl. Phys. A 66, S239–S243.CrossRefGoogle Scholar
  20. 20.
    Heinrich, M., Domke, C., Ebert, Ph., and Urban, K. (1996) Phys. Rev. B 53, 10894.ADSGoogle Scholar
  21. 21.
    Doi T., and Ichikawa, M. (1995) Direct Observation of Electron Charge of Si Atoms on a Si(001) Surface, Jpn. J. Appl. Phys. 34, 25–29.CrossRefADSGoogle Scholar
  22. 22.
    Sommerhalter, Ch., Matthes, Th.W., Glatzel, Th., Jäger-Waldau, A., and Lux-Steiner, M.Ch. (1999) High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy, Appl. Phys. Lett. 75, 286–288.CrossRefADSGoogle Scholar
  23. 23.
    Glatzel, Th., Sadewasser, S., Shikler, R., Rosenwaks, Y., and Lux-Steiner, M.Ch. (2003) Kelvin Probe Force Microscopy on III–V Semiconductors: The Effect of Surface Defects on the Local Work Function, Materials Sci. and Eng. B 102, 138–142.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Y. Rosenwaks
    • 1
  • R. Shikler
    • 1
  1. 1.Department of Physical Electronics, Faculty of EngineeringTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations