Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

Abstract

As characteristic dimensions of semiconductor devices continue to shrink, the ability to characterize structure and electronic properties in such devices at the nanometer scale has come to be of outstanding importance.

The Kelvin probe force microscopy technique has already been demonstrated as a powerful tool for measuring electrostatic forces and electric potential distribution with nanometer resolution. In this review, we demonstrate several recent applications of this technique. We begin by reviewing the basics of the method and presenting the basic experimental setup. Section 2 presents measurements conducted on operating GaP light emitting diode. The operating device surface band structure was imaged with nanometer resolution, and it was shown that the surface band structure is governed by absorption of the internal light emission. We then demonstrate how the Kelvin probe force microscopy can be used for measuring minority-carrier diffusion length in semiconductors. It is shown that this method could be very useful in measuring very short diffusion lengths (< 1 µm). The last section focuses on the sensitivity and spatial resolution in semiconductor measurements. We present a framework that allows extracting the real surface potential taking into account the tip-sample electrostatic interaction. The model is compared to ultra high vacuum Kelvin probe force microscopy measurements of atomic steps on GaP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nonenmacher, M., O'Boyle, M.P,. and Wickramasing H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923.

    Article  ADS  Google Scholar 

  2. Leng, Y., Williams, C.C., Su, L.C., and Stringfellow G.B. (1995) Atomic ordering of GaInP studied by Kelvin probe force microscopy, Appl. Phys. Lett. 66, 1264–1267.

    Article  ADS  Google Scholar 

  3. Kikukawa, A., Hosaka, S., and Imura R. (1995) Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy, Appl. Phys. Lett. 66, 3510–3512.

    Article  ADS  Google Scholar 

  4. Vatel, O. and Tanimoto M. (1995) Kelvin probe force microscopy for potential distribution measurement of semiconductor devices J. Appl. Phys. 77, 2358–2362.

    Article  ADS  Google Scholar 

  5. Chavez-Pirson, A., Vatel, O., Tanimoto, M., Ando, H., Iwamura, H., and Kanbe H. (1995) Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy, Appl. Phys. Lett. 67, 3069–3071.

    Article  ADS  Google Scholar 

  6. Mizutani, T., Arakawa, M., and Kishimoto, S. (1997) Two-dimensional potential profile measurement of GaAs HEMT's by Kelvin probe force microscopy, IEEE Elec. Dev. Lett. 18, 423–425; Arakawa, M., Kishimoto, S., and Mizutani, T. (1997) Kelvin probe force microscopy for potential distribution measurements of cleaved surface of GaAs devices, Jpn. J. Appl. Phys. 36, 1826–1829.

    Article  ADS  Google Scholar 

  7. Shikler, R., Fried, N., Meoded, T., and Rosenwaks, Y. (1999) Potential Imaging of Operating Light Emitting Devices using Kelvin Force Microscopy, Appl. Phys. Lett. 74, 2972–2974; Shikler, R., Meoded, T., Fried, N., Mishori, B., and Rosenwaks, Y. (1999) Two Dimensional Surface Band Structure of Operating Semiconductor Devices, J. Appl. Phys. 86, 107–113.

    Article  ADS  Google Scholar 

  8. Henning, A.K., Hochwitz, T., Slinkman, J., Never, J., Hoffman, S., Kaszuba, P., and Daghlian, C. (1995) Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy, J. Appl. Phys. 77, 1888–1896.

    Article  ADS  Google Scholar 

  9. Hudlet, S., Jean, M.S., Roulet, B., Berger, J., and Guthmann, C. (1995) Electrostatic forces between metallic tip and semiconductor surfaces, J. Appl. Phys. 59, 3308–3314.

    Article  ADS  Google Scholar 

  10. Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C., and Bhat, R. (1987) Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation, Appl. Phys. Lett. 51, 33–35.

    Article  ADS  Google Scholar 

  11. Mayergoyz, I.D. (1986) Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys. 59, 195–199.

    Article  ADS  Google Scholar 

  12. Gustafsson, A., Pistol, M.E., Montelius, L., and Samuelson, L. (1998) Local probe techniques for luminescence studies of low-dimensional semiconductor structures, J. Appl. Phys. 84, 1715–1775; Vertikov, A., Ozden, I., and Nurmiko A.V. (1999) Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy, Appl. Phys. Lett. 74, 850–852.

    Article  ADS  Google Scholar 

  13. Goodman, M. (1961) A method for the measurement of short minority carrier diffusion lengths in semicondutors, J. Appl. Phys. 32, 2550–2552.

    Article  ADS  Google Scholar 

  14. Markiewicz, P., and Goh, M.C. (1994) Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure, Langmuir 10, 5–7.

    Article  Google Scholar 

  15. Hochowitz, T., Henning, A.K., Levey, C., Daghlian, C., and Slinkman, J. (1996) Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes, J. Vac. Sci. Technol. B 14, 457–464.

    Google Scholar 

  16. Mayergoyz, I.D. (1986) Solution of the nonlinear Poisson equation of semiconductor device theory, J. Appl. Phys. 59, 195–199.

    Article  ADS  Google Scholar 

  17. Korman, C.E., and Mayergoyz, I.D. (1990) A globally convergent algorithm for the solution of the steady-state semiconductor device equations, J. Appl. Phys., 68, 1324–1334.

    Article  ADS  Google Scholar 

  18. Hudlet, S., Saint Jean, M., Roulet, B., Berger, J., and Guthmann, C. (1995) Electrostatic forces between metallic tip and semiconductor surfaces, J. Appl. Phys. 77, 3308–3314.

    Article  ADS  Google Scholar 

  19. Jacobs, H.O., Knapps, H.F., Muller, S., and Stemmer, A. (1997) Surface potential mapping: A qualitative material contrast in SPM, Ultramicroscopy 69, 39–49; Belaidi, S., Lebon, F., Girard, P., Leveque, G., and Pagano, S. (1998) Finite element simulations of the resolution in electrostatic force microscopy, Appl. Phys. A 66, S239–S243.

    Article  Google Scholar 

  20. Heinrich, M., Domke, C., Ebert, Ph., and Urban, K. (1996) Phys. Rev. B 53, 10894.

    ADS  Google Scholar 

  21. Doi T., and Ichikawa, M. (1995) Direct Observation of Electron Charge of Si Atoms on a Si(001) Surface, Jpn. J. Appl. Phys. 34, 25–29.

    Article  ADS  Google Scholar 

  22. Sommerhalter, Ch., Matthes, Th.W., Glatzel, Th., Jäger-Waldau, A., and Lux-Steiner, M.Ch. (1999) High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy, Appl. Phys. Lett. 75, 286–288.

    Article  ADS  Google Scholar 

  23. Glatzel, Th., Sadewasser, S., Shikler, R., Rosenwaks, Y., and Lux-Steiner, M.Ch. (2003) Kelvin Probe Force Microscopy on III–V Semiconductors: The Effect of Surface Defects on the Local Work Function, Materials Sci. and Eng. B 102, 138–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Rosenwaks, Y., Shikler, R. (2005). Nanoscale Electronic Measurements of Semiconductors Using Kelvin Probe Force Microscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_6

Download citation

Publish with us

Policies and ethics