Advertisement

Nanoscale Probing of Physical and Chemical Functionality with Near-Field Optical Microscopy

  • L.M. Eng
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)

Abstract

Near-field optical microscopy provides clue advantages for the future nanoscale inspection of organic and inorganic materials providing ultra-short time resolution and improved spatial confinement. Starting from basic properties of optical waves, this contribution summarises what chemical and physical information may be collected when performing such (near-field) optical experiments resulting in specific and functional properties of the material under consideration. Also near-field optical microscopy (SNOM) is discussed both from is theoretical and experimental point of view, directly leading to the modern type of scattering near-field optical microscopy (s-SNOM). That type of near-field method will definitely lead to the expected realm and revival for local optical detection and tracking of functional systems on the 10 nm scale.

Keywords

Funct Ionality Aperture Type Local Electric Field Enhancement Electric Field Confinement Ultra Thin Polymer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deutsche Agenda: Optische Technologien für das 21. Jahrhundert, VDI Technologiezentrum, Düsseldorf, (2000), ISBN 3-00-006083-9.Google Scholar
  2. 2.
    Pohl, D., Denk, W., and Lanz, M. (1984) Optical stethoscopy: Image recording with resolution λ/20, Appl. Phys. Lett. 44, 651–653.CrossRefADSGoogle Scholar
  3. 3.
    Fowles, G.R. (1989) Introduction to Modern Optics, Dover Publishing, New York.Google Scholar
  4. 4.
    Klar, T.A., Dyba, M., and Hell, S.W. (2001) Stimulated emission depletion microscopy with an offset depleting beam, Appl. Phys. Lett. 78, 393–395.CrossRefADSGoogle Scholar
  5. 5.
    Tarrach, G., Lagos, P.L., Hermans, R.Z., Loppacher, Ch., Schlaphof, F., and Eng, L.M. (2001) High-resolution spot allocation for Raman spectroscopy on ferroelectrics by polarization and piezoresponse force microscopy, Appl. Phys. Lett. 79, 3152–3154.CrossRefADSGoogle Scholar
  6. 6.
    Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, M. Schutze's Archiv für mikroskopische Anatomie IX 413; Abbe, E. (1982) The Relation of Aperture and Power in the Microsope, J. Royal Soc. II, 300; Abbe, E. (1982) The Relation of Aperture and Power in the Microsope, J. Royal Soc. III, 790; Abbe, E. (1904) Gesammelte Abhandlungen, Verlag Gustav Fischer, Jena.Google Scholar
  7. 7.
    Renger, J., Deckert, V., Hellmann, I., Grafström, S., and Eng, L.M. J. (2004) Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the proximity of a glass surface sharp noble metal tips, Opt. Soc. Am. A 21, in press.Google Scholar
  8. 8.
    Synge, E.H. (1928) A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region, Philos. Mag. 6, 356–362.Google Scholar
  9. 9.
    Zenhäusern, F., O'Boyle, M.P., and Wickramasinghe, H.K. (1994) Apertureless near-field optical microscope, Appl. Phys. Lett. 65, 1623–1625.CrossRefADSGoogle Scholar
  10. 10.
    Stöckle, R.M., Suh, Y.D., Deckert, V., and Zenobi, R. (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318, 131–136.CrossRefADSGoogle Scholar
  11. 11.
    Xie, X.S. and Dunn, R.C. (1994) Probing Single Molecule Dynamics, Science 265, 361–364.ADSCrossRefGoogle Scholar
  12. 12.
    Heinzelmann, H. (1996) Ph.D. thesis, University of Basel.Google Scholar
  13. 13.
    Eng, L.M. and Güntherodt, H.-J. (2000) Scanning Force Microscopy and Near-Field Optical Microscopy of Ferroelectric and Ferroelastic Domain Walls, Ferroelectrics 236, 35–46.CrossRefGoogle Scholar
  14. 14.
    Betzig, E., Trautmann, J.K., Wolfe, R., Gyorgy, E.M., Finn, P.L., Kryder, M.H., and Chang, C.-H. (1992) Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142–144.CrossRefADSGoogle Scholar
  15. 15.
    Seidel, J., Grafström, S., Loppacher, Ch., Trogisch, S. Schlaphof, F., and Eng, L.M. (2001) Near-Field Spectroscopy with White-Light Illumination, Appl. Phys. Lett. 79, 2291–2293.CrossRefADSGoogle Scholar
  16. 16.
    Voit, B., Braun, F., Loppacher, Ch., Trogisch, S., and Eng, L.M. (2002) Photolabile Ultrathin Polymer Films for Spatially Defined Attachment of Nanoobjects, Poly. Mater.: Sci. Eng. 87, 407–408.Google Scholar
  17. 17.
    Braun, F., Eng, L., Trogisch, S., and Voit, B. (2003) Novel Labile Protected Amine Terpolymers for the Preparation of Structured Functionalized Surfaces: Synthesis and Characterization, Macromol. Chem. Phys. 204, 1486–1496.CrossRefGoogle Scholar
  18. 18.
    Loppacher, Ch., Trogisch, S., Braun, F., Zherebov, A., Grafström, S., Eng, L.M., and Voit, B. (2002) Metal Salt Complexation of Spin-coated Ultrathin Diazosulfonate Terpolymer Films, Macromolecules 35, 1936–1946; Braun, F., Eng, L.M., Loppacher, Ch. Trogisch, S., and Voit, B. (2002) Novel Diazosulfonate-terpolymers for the preparation of structured functionalized surfaces — synthesis and characterization, Macromol. Chem. Phys. 203, 1781–1790.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • L.M. Eng
    • 1
  1. 1.Institute of Applied Photophysics, Department of PhysicsUniversity of Technology DresdenDresdenGermany

Personalised recommendations