Advertisement

Principles of Basic and Advanced Scanning Probe Microscopy

  • D.A. Bonnell
  • R. Shao
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)

Abstract

Understanding the behavior of complex materials such as organic self-assembled monolayers, molecular and nano wires, transition metal oxide thin films, is facilitated by probes of local properties. Recent extensions of scanning probe microscopy that extract electrical potential, capacitance, dielectric constant, electromechanical coupling coefficients and impedance, are described. In most cases, these complex properties are accessed by stimulations and/or response function detection with multiple frequency modulations. Several illustrative example include determination of the electronic structure of individual defects in a carbon nanotube, ferroelectric domain interactions in oxide thin films, and electric potential of an alkanethiol on metal.

Keywords

Scanning probe microscopy multiple modulation spatial resolution complex materials molecular wires ferroelectric domains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    As determined from COMPENDEX for 2002Google Scholar
  2. 2.
    Bonnell D.A. (ed.) (2000) Scanning probe microscopy and spectroscopy: theory, techniques and applications, 2nd edn, New York: Wiley VCH.Google Scholar
  3. 3.
    Wiesendanger R. ((ed.) 1994) Scanning probe microscopy and spectroscopy-methods and applications, Cambridge University Press, Cambridge, UK.Google Scholar
  4. 4.
    Friedbacher, G., Fuchs, H. (1999) Classification of scanning probe microscopies — (technical report), Pure and applied chemistry 71, 1337–1357.CrossRefGoogle Scholar
  5. 5.
    Bottomley, L. (1998) Scanning Probe Microscopy. Anal Chem 70, 425R–475R (and the references therein).CrossRefGoogle Scholar
  6. 6.
    Israelachvili, J.N. (1992) Intermolecular and Surface Forces, Academic Press, New York.Google Scholar
  7. 7.
    Hartmann, U. (1989) The point dipole approximation in magnetic force microscopy. Phys. Lett. A 137, 475–478.ADSGoogle Scholar
  8. 8.
    Hartmann, U. (1999) Magnetic force microscopy, Annu. Rev. Mater. Sci. 29, 53–87.CrossRefADSGoogle Scholar
  9. 9.
    Yongsunthon, R., Stanishevsky, A., Williams, E.D., and Rous, P.J. (2003) Mapping electron flow using magnetic force microscopy, Appl. Phys. Lett. 82, 3287–3289.CrossRefADSGoogle Scholar
  10. 10.
    Yongsunthon, R., Stanishevsky, A., Williams, E.D., et al. (2002) Test of response linearity for magnetic force microscopy data, J. Appl. Phys. 92, 1256–1261.CrossRefADSGoogle Scholar
  11. 11.
    Alvarez, T., Kalinin, S.V., Bonnell, D.A. (2001) Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction, Appl. Phys. Lett. 78, 1005–1007.CrossRefADSGoogle Scholar
  12. 12.
    De Wolf, P., Stephenson, R., Trenkler, T., Clarysse, T., Hantschel, T., and Vandervorst, W. (2000) Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol. B 18, 361–368.Google Scholar
  13. 13.
    De Wolf, P., Snauwaert, J., Hellemans, L., Clarysse, T., Vandervorst, W., D'Olieslaeger, M., and Quaeyhaegens D. (1995) Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips, J. Vac. Sci. Technol. A 13, 1699–1704.ADSGoogle Scholar
  14. 14.
    De Wolf, P., Clarysse, T., and Vandervorst, W. (1998) Low weight spreading resistance profiling of ultrashallow dopant profiles, J. Vac. Sci. Technol. B 16, 401–405.Google Scholar
  15. 15.
    Matey, J.R. and Blanc, J. (1985) Scanning capacitance microscopy, J. Appl. Phys. 57, 1437–1444.CrossRefADSGoogle Scholar
  16. 16.
    Barrett, R.C. and Quate, C.F. (1991) Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy, J. Appl. Phys. 70, 2725–2733.CrossRefADSGoogle Scholar
  17. 17.
    Huang, Y., Williams, C.C., and Wendman, M.A. (1996) Quantitative two-dimensional dopant profiling of abrupt dopant profiles by cross-sectional scanning capacitance microscopy, J. Vac. Sci. Technol. A 14, 1168–1171.ADSGoogle Scholar
  18. 18.
    Hantschel, T., Niedermann, P., Trenkler, T., and Vandervorst, W. (2000) Highly conductive diamond probes for scanning spreading resistance microscopy, Appl. Phys. Lett. 76, 1603–1605.CrossRefADSGoogle Scholar
  19. 19.
    Marchiando, J.T. and Kopanski, J.J. (2002) Regression procedure for determining the dopant profile in semiconductors from scanning capacitance microscopy data, J. Appl. Phys. 92, 5798–5809.CrossRefADSGoogle Scholar
  20. 20.
    Yang, J. and Kong, F.C.J. (2002) Simulation of interface states effect on the scanning capacitance microscopy measurement of p-n junctions, Appl. Phys. Lett. 81, 4973–4975.CrossRefADSGoogle Scholar
  21. 21.
    Lányi, S., Török, J., and Rehurek, P. (1996) Imaging conducting surfaces and dielectric films by a scanning capacitance microscope, J. Vac. Sci. Technol. B 14, 892–896.Google Scholar
  22. 22.
    Belaidi, S., Girard, P., and Leveque, G. (1997) Electrostatic forces acting on the tip in atomic force microscopy: modelization and comparison with analytic expressions, J. Appl. Phys. 81, 1023–1030.CrossRefADSGoogle Scholar
  23. 23.
    Edwards, H., McGlothlin, R., San Martin, R., U, E., Gribelyuk M., et al. (1998) Scanning capacitance spectroscopy: an analytical technique for pn-junction delineation in Si devices, Appl. Phys. Lett. 72, 698–700.CrossRefADSGoogle Scholar
  24. 24.
    Viscoly-Fisher, I., Cohen, S.R., and Cahen, A. (2003) Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements, Appl. Phys. Lett. 82, 556–558.CrossRefADSGoogle Scholar
  25. 25.
    Tran, T., Oliver, D.R., Thompson, D.J., and Bridges, G.E. (2002) Capacitance sensor with sub-zeptofarad (<10−21 F) sensitivity for scanning capacitance microscopy, J. Vac. Sci. Technol. B 20, 479–482.Google Scholar
  26. 26.
    Kobayashi, K., Yamada, H., and Matsushige, K. (2002) Dopant profiling on semiconducting sample by scanning capacitance force microscopy, Appl. Phys. Lett. 81, 2629–2631.CrossRefADSGoogle Scholar
  27. 27.
    Weaver, J.M.R. and Abraham, D.W. (1991) High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561.Google Scholar
  28. 28.
    Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923.CrossRefADSGoogle Scholar
  29. 29.
    Henning, A.K. and Hochwitz, T. (1996) Scanning probe microscopy for 2-D semiconductor dopant profiling and device failure analysis, Mater. Sci. Eng. B-Solid State 42, 88–98.CrossRefGoogle Scholar
  30. 30.
    Jacobs, H.O., Leuchtmann, P., Homan, O.J., and Stemmer, A. (1998) Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys. 84, 1168–1173.CrossRefADSGoogle Scholar
  31. 31.
    Cohen, S. and Efimov, A. (1999) Proceedings of STM'99, ed. Kuk Y, Lyo IW, Jeon D, Park S.I. 554.Google Scholar
  32. 32.
    Kalinin, S.V. and Bonnell, D.A. (2001) Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 1254111–12541113.Google Scholar
  33. 33.
    Cunningham, S., Larkin, I.A., and Davis, J.H. (1998) Noncontact scanning probe microscope potentiometry of surface charge patches: origin and interpretation of time-dependent signals, Appl. Phys. Lett. 73, 123–125.CrossRefADSGoogle Scholar
  34. 34.
    Franke, K., Huelz, H., and Weihnacht, M. (1998) How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415, 178–182.CrossRefADSGoogle Scholar
  35. 35.
    Kalinin, S.V. and Bonnell, D.A. (2003) J. Appl. Phys. in print.Google Scholar
  36. 36.
    Donolato, C. (1996) Electrostatic tip-sample interaction in immersion force microscopy of semiconductors, Phys. Rev. B 54, 1478–1481.ADSGoogle Scholar
  37. 37.
    Leng, Y., Williams, C.C., Su, L.C., and Stringfellow, G.B. (1995) Atomic ordering of GaInP studied by Kelvin probe force microscopy. Appl. Phys. Lett. 66, 1264–1266.CrossRefADSGoogle Scholar
  38. 38.
    Tanimoto, M. and Vatel, O. (1996) Kelvin probe force microscopy for characterization of semiconductor devices and processes, J. Vac. Sci. Technol. B 14, 1547–1551.Google Scholar
  39. 39.
    Hochwitz, T., Henning, A.K., Levey, C., Daghlian, C., Slinkman, J., et al. (1996) Imaging integrated circuit dopant profiles with the force-based scanning Kelvin probe microscope, J. Vac. Sci. Technol. B 14, 440–446.Google Scholar
  40. 40.
    Fujihira, M. (1999) Kelvin probe force microscopy of molecular surfaces, Annu. Rev. Mater. Sci. 12, 353–380.CrossRefADSGoogle Scholar
  41. 41.
    Chen, X.Q., Yamada, H., Horiuchi, T., Matsushige, K., Watanabe, S., Kawai, M., and Weiss, P.S. (1999) Surface potential of ferroelectric thin films investigated by scanning probe microscopy, J. Vac. Sci. Technol. B 17, 1930–1934.Google Scholar
  42. 42.
    Tybell, T., Ahn, C.H., and Triscone, J-M. (1999) Ferroelectricity in thin perovskite films, Appl. Phys. Lett 75, 856–858.CrossRefADSGoogle Scholar
  43. 43.
    Bridger, P.M., Bandic, Z.Z., Piquette, E.C., and McGill, T.C. (1999) Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy, Appl. Phys. Lett. 74, 3522–3524.CrossRefADSGoogle Scholar
  44. 44.
    Xu, Q. and Hsu, J.W.P. (1999) Electrostatic force microscopy studies of surface defects on GaAs/Ge films, J. Appl. Phys. 85, 2465–2472.CrossRefADSGoogle Scholar
  45. 45.
    Chavez-Pirson, A., Vatel, O., Tanimoto, M., Ando, H., Iwamura, H., and Kanbe, H. (1995) Nanometer-scale imaging of potential profiles in optically excited n-i-p-i heterostructure using Kelvin probe force microscopy, Appl. Phys. Lett. 67, 3069–3071.CrossRefADSGoogle Scholar
  46. 46.
    Meoded, T., Shikler, R., Fried, N., and Rosenwaks, Y. (1999) Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy, Appl. Phys. Lett. 75, 2435–2437.CrossRefADSGoogle Scholar
  47. 47.
    Kalinin, S.V. and Bonnell, D.A. (1999) Dynamic behavior of domain-related topography and surface potential on the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy, Z. Metallkd. 90, 983–989.Google Scholar
  48. 48.
    Luo, E.Z., Xie, Z., Xu, J.B., Wilson, I.H., and Zhao, L.H. (2000) In situ observation of the ferroelectric-paraelectric phase transition in a triglycine sulfate single crystal by variable-temperature electrostatic force microscopy, Phys. Rev. B 61, 203–206.ADSGoogle Scholar
  49. 49.
    Lü, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., and Güntherodt, H-J. (1999) Kelvin probe force microscopy on surfaces: investigation of the surface potential of self-assembled monolayers on gold, Langmuir 15, 8184–8188.CrossRefGoogle Scholar
  50. 50.
    Getty, R.R., Alvarez, R., Bonnell, D.A., et al. (2002) Materials Research Society Symposium — Proceedings 727, 155–160.Google Scholar
  51. 51.
    Kalinin, S.V. and Bonnell, D.A. (2001) Scanning impedance microscopy of electroactive interfaces, Appl. Phys. Lett. 78, 1306–1308.CrossRefADSGoogle Scholar
  52. 52.
    Kalinin, S.V. and Bonnell, D.A. (2003) Nonlinear dielectric properties at oxide grain boundaries. Z. Metallkd. 94, 188–192.Google Scholar
  53. 53.
    Kalinin, S.V., Bonnell, D.A., Freitag, and M., Johnson, A.T. (2002) Tip-gating effect in scanning impedance microscopy of nanoelectronic devices, Appl. Phys. Lett. 81, 5219–5221.CrossRefADSGoogle Scholar
  54. 54.
    Bonnell D.A., Kalinin S.V. this volumeGoogle Scholar
  55. 55.
    Shao, R., Kalinin, S.V., and Bonnell, D.A. () Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy, Appl. Phys. Lett. 82, 1869–1871.Google Scholar
  56. 56.
    Eriksson, M.A., Beck, R.G., Topinka, M., Katine, J.A., Westervelt, R.M., Campman, K.L., and Gossard, A.C. (1996) Cryogenic scanning probe characterization of semiconductor nanostructures, Appl. Phys. Lett. 69, 671–673.CrossRefADSGoogle Scholar
  57. 57.
    Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., and McEuen, P.L. (2000) Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Phys. Rev. Lett. 84, 6082–6085.CrossRefADSGoogle Scholar
  58. 58.
    Tans, S.J. and Dekker, C. (2000) Molecular transistors — potential modulations along carbon nanotubes, Nature 404, 834–835.CrossRefADSGoogle Scholar
  59. 59.
    Freitag, M., Radosavljevic, M., Clauss, A., and Johnson, T. (2000) Phys. Rev. B 62, R2307–R2310.ADSGoogle Scholar
  60. 60.
    Durkan, C., and Welland, M.E. (2000) Investigations into local ferroelectric properties by atomic force microscopy, Ultramicroscopy 82, 141–148.CrossRefGoogle Scholar
  61. 61.
    Gruverman, A., Kolosov, O., Hatano, J., Takahashi, K., and Tokumoto, H. (1995) Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy, J. Vac. Sci. Technol. B 13, 1095–1099.Google Scholar
  62. 62.
    Kalinin, S.V. and Bonnell, D.A. (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 1254081–12540811.Google Scholar
  63. 63.
    Eng, L.M., Guentherodt. H.J., Schneider. G.A., Kopke. U., and Munoz Saldana. J. (1999) Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics, Appl. Phys. Lett. 74, 233–235.CrossRefADSGoogle Scholar
  64. 64.
    Roelofs, A., Boettger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L.M. (2000) Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy, Appl. Phys. Lett. 77, 3444–3446.CrossRefADSGoogle Scholar
  65. 65.
    Harnagea, C., Pignolet, A., Alexe, M., and Hesse, D. (2001) Piezoresponse scanning force microscopy: what quantitative information can we really get out the piezoresponse measurements on ferroelectric thin films, Integr. Ferroelectr. 38, 23–29.CrossRefGoogle Scholar
  66. 66.
    Shao, R. and Bonnell, D.A. (2003) unpublished.Google Scholar
  67. 67.
    Gao, C. and Xiang, X.D. (1998) Quantitative microwave near-field microscopy of dielectric properties, Rev. Sci. Instrum. 69, 3846–3851.CrossRefADSGoogle Scholar
  68. 68.
    Cho, Y., Kirihara, A., and Saeki, T. (1996) Scanning nonlinear dielectric microscope, Rev. Sci. Instrum. 67, 2297–2303.CrossRefADSGoogle Scholar
  69. 69.
    Steinhauer, D.E., Vlahacos, C.P., Wellstood, F.C., Anlage, S.M., Canedy, C., Ramesh, R., Stanishevsky, A., and Melngailis, J. (1999) Imaging of microwave permittivity, tunability, and damage recovery in (Ba, Sr)TiO3 thin films, Appl. Phys. Lett. 75, 3180–3182.CrossRefADSGoogle Scholar
  70. 70.
    Steinhauer, D.E., Vlahacos, C.P., Dutta, S.K., Wellstood, F.C., and Anlage, S.M. (1997) Surface resistance imaging with a scanning near-field microwave microscope, Appl. Phys. Lett. 71, 1736–1738.CrossRefADSGoogle Scholar
  71. 71.
    Lee, S.C. and Anlage, S.M. (2003) Spatially-resolved nonlinearity measurements of YBa2Cu3O7−δ bicrystal grain boundaries, Appl. Phys. Lett. 82, 1893–1895.CrossRefADSGoogle Scholar
  72. 72.
    Imtiaz, A. and Anlage, S. M. (2003) A novel STM-assisted microwave microscope with capacitance and loss imaging capability, Ultramicroscopy 94, 209–216.CrossRefGoogle Scholar
  73. 73.
    Odom, T.W., Huang, J., Kim, P., and Lieber, C. (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62.CrossRefADSGoogle Scholar
  74. 74.
    Dresselhaus, M. Dresselhaus, G. Avouris, Ph. (eds.) (2001) Carbon Nanotubes:Synthesis, Structure Properties and Applications, Springer-Verlag, Berlin.Google Scholar
  75. 75.
    Tans, S.J., Geerligs, L.J., Dekker, C., Wu, J., and Wegner, G. (1997) Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated electrodes, J. Vac. Sci. Technol. B 15, 586–589.Google Scholar
  76. 76.
    Porath, D., Bezryadin, A., de Vries, S., and Dekker, C. (2000) Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638.CrossRefADSGoogle Scholar
  77. 77.
    Storm, A.J., van Noort, J., de Vries, S., and Dekker, C. (2001) Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett. 79, 3881–3883.CrossRefADSGoogle Scholar
  78. 78.
    Derycke, V., Martel, R., Appenzeller, J., and Avouris, P. (2002) Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett. 80, 2773–2775.CrossRefADSGoogle Scholar
  79. 79.
    Radosavljevic, M., Freitag, M., Thadani, K.V., and Johnson, A.T. (2002) Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors, Nano Lett. 2, 761–764.CrossRefADSGoogle Scholar
  80. 80.
    Fuhrer, M.S., Kim, B.M., Durkop, T., and Brintlinger, T. (2002) High-mobility nanotube transistor memory, Nano Lett. 2, 755–759.CrossRefADSGoogle Scholar
  81. 81.
    Luthi, R., Haefke, H., Meyer, K.P., Meyer, E., Howald, L., and Guntherodt, H.J. (1993) Surface and domain structures of ferroelectric-crystals studied with scanning force microscopy, J. Appl. Phys. 74, 7461–7471.CrossRefADSGoogle Scholar
  82. 82.
    Luthi, R., Haefke, H., Gutmannsbauer, W., Meyer, E., Howald, L., and Guentherodt, H.J. (1994) Statics and dynamics of ferroelectric domains studied with scanning force microscopy, J. Vac. Sci. Technol. B 12, 2451–2455.Google Scholar
  83. 83.
    Saurenbach, F. and Terris, B.D. (1990) Imaging of ferroelectric domain-walls by force microscopy, Appl. Phys. Lett. 56, 1703–1705.CrossRefADSGoogle Scholar
  84. 84.
    Ohgami, J., Sugawara, Y., Morita, S., Nakamura, E., and Ozaki, T. (1996) Determination of sign of surface charges of ferroelectric TGS using electrostatic force microscope combined with the voltage modulation technique, Jpn. J. Appl. Phys. A 35, 2734–2739.CrossRefADSGoogle Scholar
  85. 85.
    Eng, L.M., Fousek, J., and Gunter, P. (1997) Ferroelectric domains and domain boundaries observed by scanning force microscopy, Ferroelectrics 191, 211.CrossRefGoogle Scholar
  86. 86.
    Hong, J.W., Park, S.I., and Kim, Z.G. (1999) Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope, Rev. Sci. Instrum. 70, 1735–1739.CrossRefADSGoogle Scholar
  87. 87.
    Eng, L.M., Güntherodt, H.J., Schneider, G.A., Kopke, U., and Munoz Saldana, J. (1999) Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics, Appl. Phys. Lett. 74, 233–235.CrossRefADSGoogle Scholar
  88. 88.
    Eng, L.M., Güntherodt, H.J., Rosenman, G., Skliar, A., Oron, M., Katz, M., and Eger, D. (1998) Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals, J. Appl. Phys. 83, 5973–5977.CrossRefADSGoogle Scholar
  89. 89.
    Likodimos, V., Orlik, X.K., Pardi, L., Labardi, M., and Allegrini, M. (2000) Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy, J. Appl. Phys. 87, 443–451.CrossRefADSGoogle Scholar
  90. 90.
    Borisevich, A.Y., Kalinin, S.V., Bonnell, D.A., and Davies, P.K. (2003) J. Mat. Res., in pressGoogle Scholar
  91. 91.
    Tybell, T., Ahn, C.H., and Triscone, J-M. (1999) Ferroelectricity in thin perovskite films, Appl. Phys. Lett. 75, 856–858.CrossRefADSGoogle Scholar
  92. 92.
    Ganpule, C.S., Nagarjan, V., Li, H., Ogale, A.S., Steinhauer, D.E., Aggarwal, S., Williams, E.D., Ramesh, R., and De Wolf, P. (2000) Role of 90° domains in lead zirconate titanate thin films, Appl. Phys. Lett. 77, 292–294.CrossRefADSGoogle Scholar
  93. 93.
    Gruverman, A. and Ikeda, Y. (1998) Characterization and control of domain structure in SrBi2Ta2O9 thin films by scanning force microscopy, Jpn. J. Appl. Phys. 37, L939–941.CrossRefADSGoogle Scholar
  94. 94.
    Hong, S., Colla, E.L., Kim, E., No, K., Taylor, D.V., Tagantsev, A.K., Muralt, P., and Setter, N. (1999) High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors, J. Appl. Phys. 86, 607–613.CrossRefADSGoogle Scholar
  95. 95.
    Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., Setter, N., and No, K. (1998) Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes, Appl. Phys. Lett. 72, 2763–2765.CrossRefADSGoogle Scholar
  96. 96.
    Christman, J.A., Kim, S.H., Maiwa, H., Maria, J.P., Rodriguez, B.J., Kingon, A.I., and Nemanich, R.J. (2000) Spatial variation of ferroelectric properties in Pb(Zr0.3, Ti0.7)O3 thin films studied by atomic force microscopy, J. Appl. Phys. 87, 8031–8034.CrossRefADSGoogle Scholar
  97. 97.
    Takata, K., Miki, H., Kushida-Abdelghafar, K., Torii, K., and Fujisaki, Y. (1998) Freezing of polarization in a Pb(Zr, Ti)O3 film observed by strain imaging, Appl. Phys. A 66, S441–S443.ADSGoogle Scholar
  98. 98.
    Gruverman, A., Auciello, O., and Tokumoto, H. (1996) Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films, Appl. Phys. Lett. 69, 3191–3193CrossRefADSGoogle Scholar
  99. 99.
    Kalinin, S.V. and Bonnell, D.A. (2000) Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy, J. Appl. Phys. 87, 950–3957.Google Scholar
  100. 100.
    Likodimos, V., Labardi, M., and Allegrini, M. (2000) Kinetics of ferroelectric domains investigated by scanning force microscopy. Phys. Rev. B 61, 14440–14447.ADSGoogle Scholar
  101. 101.
    Kalinin, S.V. and Bonnell, D.A. (2001) Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy, Appl. Phys. Lett. 78, 1116–1118.CrossRefADSGoogle Scholar
  102. 102.
    Munoz-Saldana, J., Schneider, G.A., and Eng, L.M. (2001) Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy, Surf. Sci. 480, L402–L410.CrossRefGoogle Scholar
  103. 103.
    Alexe, M., Gruverman, A., Harnagea, C., Zakharov, ND., Pignolet, A., Hesse, D., and Scott, J.F. (1999) Switching properties of self-assembled ferroelectric memory cells, Appl. Phys. Lett. 75, 1158–1160.CrossRefADSGoogle Scholar
  104. 104.
    Roytburd, A.L., Alpay, S.P., Nagarajan, V., Ganpule, C.S., Aggarwal, S., Williams, E.D., and Ramesh, R. (2000) Measurement of internal stresses via the polarization in epitaxial ferroelectric films, Phys. Rev. Lett. 85, 190–193.CrossRefADSGoogle Scholar
  105. 105.
    Ganpule, C.S., Stanishevsky, A., Aggarwal, S., Melngailis, J., Williams, D.E., Ramesh, R., Joshi, V., and Paz de Araujo, C. (1999) Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films, Appl. Phys. Lett. 75, 3874–3876.CrossRefADSGoogle Scholar
  106. 106.
    Alexe, M., Harnagea, C., Hesse, D., and Gosele, U. (1999) Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75, 1793–1795.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • D.A. Bonnell
    • 1
  • R. Shao
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations