Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

  • 1782 Accesses

Abstract

In this paper we review our recent work studying biomolecular self-assembly using temperature controlled atomic force microscopy. In particular, we examined supported planar bilayers (SPBs), DNA-SPBs complexes, and their transitions during heating the system above the melting transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morris, V.J., Kirby A.R., and Gunning A.P. (2001) Atomic force microscopy for Biologists, Imperial College Press, London.

    Google Scholar 

  2. Han, W., Lindsay, S.M., and Jing, T.A (1996) Magnetically driven oscillating probe microscope for operation in liquids, Appl. Phys. Lett. 69, 1–3.

    Article  Google Scholar 

  3. Han, W. and Lindsay, S.M. (1998) Probing molecular ordering at a liquid-solid interface with a magnetically oscillated atomic force microscope, Appl. Phys. Lett. 72, 1656–1658.

    Article  ADS  Google Scholar 

  4. Fasolka, M.J., Mayes, A.M. and Magonov, S.N. (2001) Thermal enhancement of AFM phase contrast for imaging diblock copolymer thin film morphology, Ultramicroscopy 90, 21–31.

    Article  Google Scholar 

  5. Vesenka, J., Manne, S., Giberson, R., Marsh, T., and Henderson, E. (1993) Colloid gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules, Biophys. J. 65, 992–997.

    Article  Google Scholar 

  6. Brian, A.A. and McConnell, H.M. (1984) Allogenic stimulation of cytoxic T cells by supported planar membranes, Proc. Natl. Acad. Sci. U.S.A. 81, 6159–6163.

    Article  ADS  Google Scholar 

  7. Leonenko, Z.V., Carnini, A., and Cramb, D.T. (2000) Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy, Biochim. Biophys. Acta. 1509, 134–147.

    Google Scholar 

  8. Leonenko, Z., Merkle, D., Lees-Miller, S.P. and Cramb, D. (2002) Lipid Phase Dependence of DNA — Cationic Phospholipid Bilayer Interactions examined using Atomic Force Microscopy, Langmuir, 18, 4873–4884.

    Article  Google Scholar 

  9. Leonenko, Z. and Cramb, D. (2002) Effect of DNA adsorption on the phase cycling of a supported phospholipid bilayer, Nanoletters, 2, 305–309.

    ADS  Google Scholar 

  10. Leonenko, Z.V., Ma, H., Dahms, T.E.S., and Cramb, D.T., (2004) Investigation Of Temperature Induced Phase Transitions In DOPC And DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy, Biophys. J. (in press).

    Google Scholar 

  11. Sorgi F.L. and Huang, L. (1997) Drug delivery applications, In Lipid polymorphism and membrane properties. Current Topics in Membranes. 44, 449–475.

    Article  Google Scholar 

  12. May, S., Harris, D., and Ben-Shaul, A. (2000) The Phase Behavior of Cationic Lipid-DNA Complexes, Biophys. J. 78, 1681–1697.

    Article  Google Scholar 

  13. Koltover, I., Salditt, T., Rädler, J.O., and Safinya, C.R. (1998) An inverted hexagonal phase of cationic-DNA complexes related to DNA release and delivery”, Science. 281, 78–81.

    Article  ADS  Google Scholar 

  14. Rädler, J.O., Koltover, I., Jamieson, A., Salditt, T., and Safinya, C.R. (1998) Structure and interfacial aspects of self-assembled cationic lipid-DNA gene carrier complexes, Langmuir. 14, 4272–4283.

    Article  Google Scholar 

  15. Wong, F.M.P., Reimer, D.L., and Bally, M.B. (1996) Cationic lipid binding to DNA: characterization of complex formation, Biochem. 35, 5756–5763.

    Article  Google Scholar 

  16. May, S. and Ben-Shaul, A. (1997) DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures, Biophys. J. 73, 2427–2440.

    Article  ADS  Google Scholar 

  17. Dan, N. (1998) The structure of DNA complexes with cationic liposomes-cylindrical or lamellar?, Biochim. Biophys. Acta. 1369, 34–38.

    Article  Google Scholar 

  18. Wagner, K., Harries, D., May, S., Kahl, V., Radler, J. O., and Ben-Shaul, A. (2000) Counterion release upon cationic lipid-DNA complexation, Langmuir.16, 303–306.

    Article  Google Scholar 

  19. Dan, N. (1997) Multilamellar structures of DNA complexes with cationic, liposomes Biophys. J. 73, 1842–1846.

    Article  Google Scholar 

  20. Mou, J., Czajkowsky, D.M., Zhang, Y., and Shao, Z. (1995) High Resolution Atomic Force Microscopy of DNA: the pitch of the double helix, FEBS Lett. 371, 279–282.

    Article  Google Scholar 

  21. Fang, Y. and Yang, J. (1997) Effect of Cationic Strength and Species on 2-D Condensation of DNA, J. Phys. Chem. B 101, 3453–3456.

    Google Scholar 

  22. Hansma H. G. and Laney, D. E. (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy, Biophys. J. 70, 1933–1939.

    Article  ADS  Google Scholar 

  23. Han, W., Dlakic, M., Zhu, Y.J., Lindsay, S.M., and Harrington, R.E. (1997) Strained DNA is kinked by low concentrations of Zn2+, Proc. Natl. Acad. Sci. U.S.A. 94, 10565–10570.

    Article  ADS  Google Scholar 

  24. Tenchov, B., Koynova, R., and G. Rapp, (2001) New ordered metastable phases between the gel and subgel phases in hydrated phospholipids, Biophys. J. 80, 1873–1890.

    Article  Google Scholar 

  25. Kinnunen, P.K.J. and Mouritsen, O.G., (1994) Special Issue of Functional Dynamics of Lipids in Biomembranes, Chem. Phys. Lipids, 73, 1–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Leonenko, Z., Cramb, D. (2005). Dynamics in Model Membranes and DNA-Membrane Complexes Using Temperature Controlled Atomic Force Microscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_29

Download citation

Publish with us

Policies and ethics