Probing the Density of States of High Temperature Superconductors with Point Contact Tunneling Spectroscopy

  • L. Ozyuzer
  • J.F. Zasadzinski
  • N. Miyakawa
  • K.E. Gray
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


Tunneling spectroscopy measurements are performed on single crystals of single CuO2 layer Tl2Ba2CuO6+δ , double CuO2 layer Bi2Sr2CaCu2O8+δ (Bi2212) and polycrystal quadruple CuO2 layer CuBa2Ca3Cu4O12+δ using the point contact tunneling technique. IV and dI/dV-V characteristics are obtained at 4.2 K. In spite of different number of layers and Tc values, all three high-Tc superconductors exhibit similar spectral features including dip and hump features reminiscent of strong-coupling effects in conventional superconductors. The doping dependence of Bi2212 is studied and several effects of the hole concentration on spectral features are found. A novel effect is that the energy gap increases in the underdoped region even as Tc decreases. Combining the doping dependence of the energy gap and the dip energy provides additional information in order to understand the mechanism of high-Tc superconductivity. Point contact tunneling studies of the doping dependence of the energy gap in Bi2212 also helped to understand local variations of the gap magnitude observed by scanning tunneling microscopy, indicating that this type of spectroscopy is an integral part of the tunneling technique.


Tunneling Spectroscopy Doping Dependence Quasiparticle Peak Point Contact Tunneling Wave Pairing Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolf, E.L. (1985) Principles of Electron Tunneling Spectroscopy. Oxford Univ. Press, New York.Google Scholar
  2. 2.
    Bonnel, D. A. (1993) Scanning Tunneling Microscopy and Spectroscopy. VCH Publishers, New York.Google Scholar
  3. 3.
    Ozyuzer, L., Zasadzinski, J.F., Kendziora, C., and Gray, K.E. (2000) Quasiparticle and Josephson tunneling of overdoped Bi2Sr2CaCu2O8+δ single crystals, Phys. Rev. B 61, 3629–3640.ADSGoogle Scholar
  4. 4.
    Ozyuzer, L., Yusof, Z., Zasadzinski, J.F., Li, T.-W., Hinks, D.G., and Gray, K.E. (1999) Tunneling spectroscopy of Tl2Ba2CuO6+x, Physica C 320, 9–20.ADSGoogle Scholar
  5. 5.
    Ozyuzer, L., Zasadzinski, J.F., and Gray, K.E. (1998) Point contact tunneling apparatus with temperature and magnetic field control, Cryogenics 38, 911–915.CrossRefGoogle Scholar
  6. 6.
    Ozyuzer, L., Zasadzinski, J.F., Gray, K.E., Kendziora, C., and Miyakawa, N. (2002) Absence of pseudogap in heavily overdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy of break junctions, Europhysics Letters 58, 589–595.CrossRefADSGoogle Scholar
  7. 7.
    Cren, T., Roditchev, D., Sacks, W., and Klein, J. (2000) Constraints on the quasiparticle density of states in high-Tc superconductors, Europhysics Letters 52, 203–209.CrossRefADSGoogle Scholar
  8. 8.
    Renner, Ch., Revaz, B., Genoud, J.-Y., and Fischer, Ø. (1996) Oxygen doping and temperature dependence of the tunneling spectroscopy on Bi2Sr2CaCu2O8+δ, J. Low Temp. Phys. 105, 1083–1089.CrossRefADSGoogle Scholar
  9. 9.
    Pan, S.H., O'Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.W., Hudson, E.W., Lang, K.M., and Davis, J.C. (2001) Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+δ, Nature 413, 282–285.CrossRefADSGoogle Scholar
  10. 10.
    Cren, T., Roditchev, D., Sacks, W., Klein, J., Moussy, J.B., Deville-Cavellin, C., and Lagues M. (2000) Influence of disorder on the local density of states in high-Tc superconducting thin films, Phys. Rev. Lett. 84, 147–150.CrossRefADSGoogle Scholar
  11. 11.
    Miyakawa, N., Zasadzinski, J.F., Ozyuzer, L., Guptasarma, P., Hinks, D.G., Kendziora, C., and Gray K.E. (1999) Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy, Phys. Rev. Lett. 83, 1018–1021.CrossRefADSGoogle Scholar
  12. 12.
    Dipasupil, R.M., Oda, M., Momono, N., and Ido, M. (2002) Energy gap evolution in the tunneling spectra of Bi2Sr2CaCu2O8+δ, J. Phys. Soc. Jpn. 71, 1535–1540.CrossRefADSGoogle Scholar
  13. 13.
    Zasadzinski, J.F., Ozyuzer, L., Miyakawa, N., Gray, K.E., Hinks, D.G., and Kendziora, C. (2001) Correlation of tunneling spectra in Bi2Sr2CaCu2O8+δ with the resonance spin excitation, Phys. Rev. Lett. 87, 067005.1–067005.4.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • L. Ozyuzer
    • 1
  • J.F. Zasadzinski
    • 2
  • N. Miyakawa
    • 3
  • K.E. Gray
    • 4
  1. 1.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey
  2. 2.Physics DivisionIllinois Institute of TechnologyUSA
  3. 3.Tokyo University of ScienceSuwaJapan
  4. 4.Materials Science DivisionArgonne National LaboratoryUSA

Personalised recommendations