Electrical Characterisation of III–V Buried Heterostructure Lasers by Scanning Capacitance Microscopy

  • O. Douheret
  • K. Maknys
  • S. Anand
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


In this work, cross-sectional scanning capacitance microscopy (SCM) is used to investigate GaAs/AlGaAs buried heterostructure (BH) lasers regrown with semi-insulating GaInP:Fe. The basic principles involved in the SCM methodology are first introduced, including resolution. The concept of doping contrast in SCM is experimentally demonstrated using InP doping staircase structure where in the doping in the different layers covers a reasonably wide dynamic range [∼1018cm−3 to ∼1016cm−3]. The capability of SCM to achieve complete electrical characterization of complex optoelectronic devices is then established using BH GaAs based lasers as an example. It is shown that a complete 2D map of the electrical properties of device structure, including delineation of regrown interfaces and the electrical nature of the regrown GaInP layer can be obtained. Characteristic peaks in the SCM signal (dC/dV) are seen at the interface between the regrown layers and the n-doped regions and attributed to band-bending at the interface. The behavior of the SCM signal with ac-bias is used to verify the semi-insulating nature of the regrown layer at different locations of the sample. The measured SCM signal for the regrown GaInP:Fe layer is uniformly zero indicating very low free carrier densities and confirms semi-insulating properties. This observation strongly suggests, in addition, uniform Fe incorporation in the regrown layers, close to and far away from the mesa. Finally, a nanoscale feature in the SCM contrast appearing as a bright spot in dC/dV mode is observed at the mesa sidewall close to the interface between the regrown GaInP:Fe and the p-barrier layer. The origin of this contrast is discussed in terms of local band-bending effects and supported by 2D Poisson simulations of the device structure.


Scanning Capacitance Microscopy Mesa Sidewall Aser Structure Bury Heterostructure Regrow Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dagata, J.A. and Kopanski, J.J. (1995) Scanning probe techniques for the electrical characterization of semiconductor devices, Solid State Technol. 38-7, 91–95.Google Scholar
  2. 2.
    Vandervorst, W., Clarysse, T., De Wolf, P., Trenkler, T., Hantschel, T., and Stephenson R. (1997) Dopant/carrier profiling for ULSI. Future Fab. Int. 1–4, 287.Google Scholar
  3. 3.
    Williams, C. C. (1999) Two-dimensional dopant profiling by scanning capacitance microscopy, Annu. Rev. Mater. Sci. 29, 471–504.CrossRefADSGoogle Scholar
  4. 4.
    Edwards, H., Ukraintsev, V.A., San Martin, R., Johnson, F.S., Menz, P., Walsh, S., Ashburn, S., Wills, K.S., Harvey, K., and Chang, M-C (1999) Pn-junction delineation in Si devices using scanning capacitance spectroscopy, J. Appl. Phys. 87(3), 1485–1495.CrossRefADSGoogle Scholar
  5. 5.
    Kopanski, J.J., Marchiando J.F., and Lowney J. R. (1995) Scanning capacitance microscopy measurements and modelling: Progress towards dopant profiling, J. Vac. Sci. Technol. B 14(1), 242–247.Google Scholar
  6. 6.
    Zavyalov, V.V., McMurray, J.S., and Williams C. C. (1999) Advances in experimental technique for quantitative two-dimensional dopant profiling by scanning capacitance microscopy, Rev. Sci. Instrum. 70(1), 158–164.CrossRefADSGoogle Scholar
  7. 7.
    Anand, S. (2000) Another dimension in device characterization: Scanning capacitance microscopy of InP-lasers structures, IEEE Circuits and Devices 16, 12–18.CrossRefGoogle Scholar
  8. 8.
    Leong, J-K., Williams, C.C., Olson, J.M., and Froyen S. (1996) Evidence for internal electric fields in two variant ordered GaInP obtained by scanning capacitance microscopy, Appl. Phys. Lett. 69(26), 4081–4083.CrossRefADSGoogle Scholar
  9. 9.
    Smith, K.V., Yu, E.T., Redwing, J.M., and Boutros, K.S. (1999) Scanning capacitance microscopy of AlGaN/GaN heterostructure field-effect transistor epitaxial layer structures, Appl. Phys. Lett. 75(15), 2250–2252.CrossRefADSGoogle Scholar
  10. 10.
    Bowallius, O., Anand, S., Nordell, N., Landgren, G., and Karlsson, S. (2001) Scannning capacitance microsopy investigations of SiC structures, Mat. Sci. in Semic. Proc. 4, 209–211.CrossRefGoogle Scholar
  11. 11.
    Giannazzo, F., Calcagno, L., Raineri, V., Ciampolini, L., Ciappa, M., and Napolitani, E. (2001) Quantitative carrier profiling in ion-implanted 6H-SiC, Appl. Phys. Lett. 79(8), 1211–1213.CrossRefADSGoogle Scholar
  12. 12.
    Hammar, M., RodrÍguez Messmer, E., Luzuy, M., Anand, S., Lourdudoss, S., and Landgren, G. (1998) Topography dependent doping distribution in selectively regrown InP studied by scanning capacitance microscopy, Appl. Phys. Lett. 72(7), 815–817.CrossRefADSGoogle Scholar
  13. 13.
    Bowallius, O., Anand, S., Hammar, M., Nilsson, S., and Landgren, G. (1999) Scanning capacitance microscopy investigations on buried heterostructure laser structures, Appl. Surf. Sci. 144–145, 137–140.CrossRefGoogle Scholar
  14. 14.
    De Wolf, P., Geva, M., Reynolds, C.L., Hantschel, T., Vandervorst, W., and Bylsma, R.B. (1999) Two-dimensional carrier profiling of InP-based structures using scanning spreading resistance microscopy, J. Vac. Sci. Technol. A 17(4), 1285–1288.ADSGoogle Scholar
  15. 15.
    Richter, S., Geva, M., Garno, J.P., and Kleiman, R.N. (2000) Metal-insulator-semiconductor tunneling microscope: two-dimensional dopant profiling of semiconductors with conducting atomic-force microscopy, Appl. Phys. Lett. 77(3), 456–458.CrossRefADSGoogle Scholar
  16. 16.
    Hong, C-S., Kasemset, D., Kim, M-E., and Milano, R.A. (1983) GaAlAs buried-heterostructure lasers grown by a two-step MOCVD process, Electron. Lett. 19, 759–760.ADSCrossRefGoogle Scholar
  17. 17.
    Dutta, N.K., Zilko, J.K., Cella, T., Ackerman, D.A., Shen, T.M., and Napholtz, S.G. (1986) InGaAsP laser with semi-insulating current confining layers, Appl. Phys. Lett. 48(23), 1572–1573.CrossRefADSGoogle Scholar
  18. 18.
    Angulo Barrios, C., RodrÍguez Messmer, E., Holmgren, M., and Lourdudoss, S. (2000) GaAs/AlGaAs buried heterostructure laser by wet etching and semi-insulating GaInP:Fe regrowth, Electrochem. and Solid-State Lett. 3(9), 439–441.CrossRefGoogle Scholar
  19. 19.
    Gotto, K. and Hane, K. (1998) Application of a semiconductor tip to capacitance microscopy, Appl. Phys. Lett. 73(4), 544–546.CrossRefADSGoogle Scholar
  20. 20.
    O'Malley, M.L., Timp, G.L., Timp, W., Moccio, S.V., Garno, J.P., and Kleiman, R.N. (1999) Electrical simulation of scanning capacitance microscopy imaging of the pn junction with semiconductor probe tips, Appl. Phys. Lett. 74(24), 3672–3674.CrossRefADSGoogle Scholar
  21. 21.
    Bowallius, O. and Anand, S. (2001) Evaluation of different oxidation methods for silicon for scanning capacitance microscopy, Mat. Sci. Sem. Proc. 4, 81–84.CrossRefGoogle Scholar
  22. 22.
    Angulo Barrios, C., Lourdudoss, S., and Martinsson, H. (2002) Analysis of leakage current in GaAs/AlGaAs buried-heterostructure lasers with a semi-insulating GaInP:Fe burying layer, J. Appl. Phys. 92(5), 2506–2517.CrossRefADSGoogle Scholar
  23. 23.
    Gaarder, A., Marcinkevicius, S., Angulo Barrios, C., and Lourdudoss, S. (2002) Time-resolved micro-photoluminescence studies of deep level distribution in selectively regrown GaInP:Fe and GaAs:Fe, Semiconductor Science and Technology 17, 129–134.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • O. Douheret
    • 1
  • K. Maknys
    • 1
  • S. Anand
    • 1
  1. 1.Department of Microelectronics & Information TechnologyLaboratory of Materials and Semiconductor Physics,, Royal Institute of Technology (KTH)KistaSweden

Personalised recommendations