Advertisement

Scanning Capacitance Force Microscopy and Kelvin Probe Force Microscopy of Nanostructures Embedded in SiO2

  • G. Tallarida
  • S. Spiga
  • M. Fanciulli
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)

Abstract

Scanning capacitance force microscopy and Kelvin probe force microscopy are used to image Sn nanometer sized structures embedded in silicon oxide thin films. The capacitance variation occurring between probe and sample in presence of a metallic cluster modifies the oscillation amplitude of the AFM probe at twice the frequency of the applied voltage. The extreme localisation of the interaction due to the small geometries involved allows a lateral resolution of few nm. Issues related to the contrast mechanism and the spatial resolution are discussed with the support 2D finite element calculation of the electrostatic field distribution between probe and sample.

Keywords

Probe Force Microscop Capacitive Force Electrostatic Field Distribution Potential Distribution Measurement Produce Capacitance Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nonnemacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923.CrossRefADSGoogle Scholar
  2. 2.
    Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, HRW International Editions, Philadephia.Google Scholar
  3. 3.
    Abraham, D.W., Williams, C., Slinkman J., and Wickramasinghe, H.K (1991) Lateral dopant profiling in semiconductors by forcing microscopy using capacitive detection, J. Vac. Sci. Technol. B 9, 703–706.Google Scholar
  4. 4.
    Kobayashi, K., Yamada, H., and Matsushige, K. (2002) Dopant profiling on semiconducting sample by scanning capacitance force microscopy, Appl. Phys Lett. 81, 2629–2631.CrossRefADSGoogle Scholar
  5. 5.
    Spiga, S., Ferrari, S., Fanciulli, M., Schmidt, B., Heinig, K.-H., Grötzschel, R., Mücklich, A., and Pavia, G. (2001) Kinetics of ion beam synthesis of Sn and Sb cluster in SiO2 layers, Mat. Res. Soc. Symp. Proc. 647, O11.23.1–6.Google Scholar
  6. 6.
    Spiga, S., Fanciulli, M., Ferretti, N., Boscherini, F., D'Acapito, F., Ciatto, G., and Schmidt, B. (2003) Formation and structure of Sn and Sb nanoclusters in thin SiO2 films, Nuclear Instr. Meth. B 200, 171–177.CrossRefADSGoogle Scholar
  7. 7.
    Spiga, S., Mantovan, R., Fanciulli, M., Ferretti, N., Boscherini, F., D'Acapito, F., Schmidt, B., and Grötzschel, R. (2003) Local structure of Sn implanted in SiO2 films, Phys. Rev. B 68, 205419-1-20.Google Scholar
  8. 8.
    Vatel, O. and Tanimoto, M. (1995), Kelvin probe force microscopy for potential distribution measurement of semiconductor devices, J. Appl. Phys. 77, 2358–2362.CrossRefADSGoogle Scholar
  9. 9.
    Efimov, A., Cohen, S., and Vac, J. (2000) Simulation and correction of geometric distortions in scanning Kelvin probe microscopy, J. Vac. Sci. Technol. A 18, 1051–1055.ADSGoogle Scholar
  10. 10.
    Tallarida, G., Spiga, S., and Fanciulli, M., (2003) Characterisation of nanocrystals by scanning capacitance force microscopy, Mat. Res. Soc. Symp. Proc.. 738, 171–176.Google Scholar
  11. 11.
    Field Precision — EStat 5.0Google Scholar
  12. 12.
    Hudlet, S., Saint Jean, M., and Guthmann, C., Berger, J. (1998) Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface, Eur. Phys. J. B 2, 5–10.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • G. Tallarida
    • 1
  • S. Spiga
    • 1
  • M. Fanciulli
    • 1
  1. 1.Laboratorio MDM — INFMAgrate Brianza, MilanItaly

Personalised recommendations