Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

  • 1789 Accesses

Abstract

The scanning tunneling microscope (STM) after sophisticated modification is a powerful technique to investigate surface acoustic waves (SAWs) with high spatial resolution. Using our ultra high vacuum SAW-STM, a Rayleigh wave propagating in LiNbO3 has been characterized. In accordance with a previous model, the amplitude and phase signals extracted from the modulated tunneling current depend on the surface inclination and the eccentricity β of the SAW. From comparison with simulated amplitude and phase images a value for β=30–40° is obtained in good agreement with the theoretical eccentricity of the Rayleigh wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Royer, D. and Dieulesaint, E. (2000) Elastic Wave in Solid I, Springer-Verlag, Berlin.

    Google Scholar 

  2. Monchalin, J.-P. (1986) Optical detection of ultrasound, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. UFFC-33, 485–499.

    Article  ADS  Google Scholar 

  3. Chilla, E., Rohrbeck, W., Fröhlich, H.-J., Koch, R., and Rieder, K.H. (1992) Probing of surface acoustic wave fields by a novel scanning tunneling microscopy technique: Effects of topography, Appl. Phys. Lett. 61, 3107–3709.

    Article  ADS  Google Scholar 

  4. Hesjedal, T., Chilla, E., and Fröhlich, H.-J. (1996) Direct visualization of the oscillation of Au (111) surface atoms, Appl. Phys. Lett. 69, 354–356.

    Article  ADS  Google Scholar 

  5. Voigt, P.U. and Koch, R. (2002) Quantitative geometry of the Rayleigh wave oscillaton ellipse by surface acoustic wave scanning tunneling microscopy, J. Appl. Phys. 92, 7160–7167.

    Article  ADS  Google Scholar 

  6. Voigt, P.U., Krauß, S., Chilla, E., and Koch, R. (2001) Surface Acoustic Wave Investigation by UHV Scanning Tunneling Microscopy, J. Vac. Sci. Technol. A 19, 1817–1821.

    ADS  Google Scholar 

  7. Chilla, E., Rohrbeck, W., Fröhlich, H.-J., Koch, R., and Rieder, K.H. (1994) Scanning tunneling microscopy of rf oscillating surfaces, Ann. Phys. 3, 21–27.

    Article  Google Scholar 

  8. Yang, J., Voigt P.U., and Koch, R. (2003) Nanoscale investigation of longitudinal surface acoustic waves, Appl. Phys. Lett. 82, 1866–1868.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Yang, J., Koch, R. (2005). Nanoscale Investigation of a Rayleigh Wave on LiNbO3 . In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_20

Download citation

Publish with us

Policies and ethics