Advertisement

Scaling of Silicon-Based Devices to Submicron Dimensions

  • A.I. Kingon
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)

Keywords

Technology Node Mater Ials FERAM Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moore, G.E. (1975) Progress in digital integrated electronics, International Electron Devices Meeting 1975, Technical digest, pp. 11–13.Google Scholar
  2. 2.
    International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 1992, 1995, 1997, 1999, 2001, and 2003 editions. (url for 2001 edition is http://public.itrs.net)Google Scholar
  3. 3.
    Kingon, A.I., Maria J.-P., and Streiffer, S.K. (2000) Alternative dielectrics to silicon dioxide for memory and logic devices, Nature, 406, 1032–1038.CrossRefGoogle Scholar
  4. 4.
    Lo, S.-H., Buchanan, D.A., Taur, Y., and Wang, W. (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's, IEEE Electron Device Letters 18, 209–211.CrossRefADSGoogle Scholar
  5. 5.
    Data from the 2003 SIA Roadmap for Semiconductors.Google Scholar
  6. 6.
    Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., and Timp, G. (1999) The electronic structure of the atomic scale of ultra-thin gate oxides, Nature 399, 758–761.CrossRefADSGoogle Scholar
  7. 7.
    Schroeder, H. and Kingon, A.I. (2003) High-Permittivity Materials for DRAMs, in R. Waser (ed.), Nanoelectronics and Information Technology, Wiley-VCH Verlag GmbH & Co., pp. 539–563.Google Scholar
  8. 8.
    Summerfelt, S.R. (1997) (Ba,Sr)TiO3 Thin Films for DRAM's, in R. Ramesh (ed.), Thin Film Ferroelectric Materials and Devices, Kluwer Academic Publishers, Boston, pp. 1–42.Google Scholar
  9. 9.
    Kotecki, D.E., (1997) A review of high dielectric materials for DRAM applications, Integr. Ferroel. 16, 1–19.CrossRefGoogle Scholar
  10. 10.
    Kotecki, D.E., Baniecki, J.D., Shen, H., et al. (1999) (Ba,Sr)TiO3 dielectrics for future stacked-capacitor DRAM, IBM J. Res. Develop. 43, 367–382.CrossRefGoogle Scholar
  11. 11.
    Osburn, C.M., Campbell, S.A., Eisenbraun, E., Garfunkel, E., Gustafson, T., Kingon, A., Kwong, D.-L., Lee, J., Lucovsky, G., Ma, T.P., Maria, J.P., Misra, V., Parsons, G., Schlom, D., and Stemmer, S. (2004) Materials and processes for high K gate stacks, to be published in IFST.Google Scholar
  12. 12.
    Hubbard, K.J. and Schlom, D.G., (1996) Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757–2776.ADSCrossRefGoogle Scholar
  13. 13.
    Robertson, J. (2002) Electronic structure and band offsets of high-dielectric-constant gate oxides, Mater. Res. Bull. 27, 217–221.Google Scholar
  14. 14.
    For example: Lucovsky, G. (2003) Electronic structure of transition metal/rare earth high-K gate dielectrics: interfacial band alignments and intrinsic defects, Microelectron. Reliab. 43, 1417–1426.CrossRefGoogle Scholar
  15. 15.
    Zhu, W., Han, J.-P., and Ma, T.P. (2004) Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics, IEEE Trans. El. Dev. 51, 98–105.CrossRefADSGoogle Scholar
  16. 16.
    Fischetti, M., Neumayer, D., and Cartier, E. (2001) Effective electron mobility in Si inversion layers in MOS systems with a high-k insulator: the role of remote phonon scattering, J. Appl. Phus. 90, 4587–4608.CrossRefADSGoogle Scholar
  17. 17.
    Maria, J.-P., Wicaksana, D., Kingon, A.I., Busch, B., Schulte, H., Garfunkel E., and Gustafsson, T., (2001) High temperature stability in lanthanum and zirconium-based gate dielectrics, J. Appl. Phys. 90, 3476–3482.CrossRefADSGoogle Scholar
  18. 18.
    Stemmer, S., Chen, Z., Keding, R., Maria, J.-P., Wicaksana, D., and Kingon, A.I., (2002) Stability of ZrO2 layers on Si (001) during high temperature anneals under reduced oxygen partial pressures, J. Appl. Phys. 92, 82–86.CrossRefADSGoogle Scholar
  19. 19.
    Data compiled by C M Osburn, NCSU, and privately communicated.Google Scholar
  20. 20.
    Chen, P.J., Cartier, E., Carter, R.J., et al. (2002) Thermal stability and scalability of Zr-aluminate-based high-k gate stacks, 2002 Symposium on VLSI Technology Digest of Technical Papers, pp. 192–193.Google Scholar
  21. 21.
    Misra, V., Lucovsky, G., and Parsons, G. (2002) Issues in high-k gate stack interfaces, Mater. Res. Bull. 27, 212–216.Google Scholar
  22. 22.
    Zhong, H., Hong, S.N., Suh, Y.-S., Lazar, H., Heuss, G., and Misra, V. (2001) Properties of Ru-Ta alloys as gate electrodes for NMOS and PMOS devices, 2001 Symposium on VLSI Technology, Digest of Technical Papers, pp. 49–53.Google Scholar
  23. 23.
    Guha, S., Cartier, E., Gribelyuk, M.A., Bojarczuk N.A., and Copel, M.C., (2000) Atomic beam deposition of lanthanum-and yttrium-based oxide thin films for gate dielectrics, Appl. Phys. Lett. 77, 2710–2712.CrossRefADSGoogle Scholar
  24. 24.
    Stemmer, S., Maria, J.-P., and Kingon, A.I. (2001) Structure and stability of La2O3/SiO2 layers on Si(001),” Appl. Phys. Lett. 79, 102–104.CrossRefADSGoogle Scholar
  25. 25.
    Copel, M., Cartier, E., Narayanan, V., Reuter, M.C., Guha, S., and Bojarczuk, N. (2002) Characterization of silicate/Si(001) interfaces, Appl. Phys. Lett. 81, 4227–4229.CrossRefADSGoogle Scholar
  26. 26.
    Park Y. and Kim, K. (2001) COB stack DRAM cell technology beyond 100nm technology node, International Electron Devices Meeting 2000, Technical Digest, pp. 391–394.Google Scholar
  27. 27.
    Hiratani, M., Hamada, T., Iijima, S., Ohji, Y., Asano, I., Nakanishi, N. and Kimura, S. (2001) A heteroepitaxial MIM-Ta2O5 capacitor with enhanced dielectric constant for DRAMS of G-bit generation and beyond, 2001 Symposium on VLSI Technology, Digest of Technical Papers, pp. 41–42.Google Scholar
  28. 28.
    Fukuzumi, Y., Suzuki, T., Sato, A., Ishibashi, Y., Hatada, A., Nakamura, K., Tsunoda, K., Fukuda, M., Lin, J., Nakabayashi, M., Minakata, H., Shimada, A., Kurahashi, T., Tomita, H., Matsunaga, D., Hieda, K., Hashimoto, K., Nakamura, S. and Kohyama, Y. (2000) Liner-supported cylinder (LSC) technology to realize Ru/Ta2O5/Ru capacitor for future DRAMs, International Electron Devices Meeting 2000, Technical digest, pp. 793–796.Google Scholar
  29. 29.
    Lin, J., Suzuki, T., Minakata, H., Shimada, A., Tsunoda, K., Fukuda, M., Kurahashi, T., Fukuzumi, Y., Hatada, A., Sato, A., Sun, P.H., Ishibashi, Y., Tomita, H., Nishikawa, N., Ito, E., Liu, W.C., Chu, C.M., Suzuki, R., Nakabayashi, M., Matsunaga, D., Hieda, K., Hashimoto, K., Nakamura, S., Kohyama, Y., and Shiah, C.M. (2001) Backend process for cylindrical Ru/Ta2O5/Ru capacitor for future DRAM, Solid-State and Integrated-Circuit Technology, Proceedings, pp. 183–188.Google Scholar
  30. 30.
    Kim, W.D., Kim, J.W., Won, S.J., Nam, S.D., Nam, B.Y., Yoo, C.Y., Park, Y.W. Lee, S.I., and Lee, M.Y. (2000) Development of CVD-Ru/Ta2O5/CVD-TiN capacitor for multigigabit-scale DRAM generation, 2000 Symposium on VLSI Technology, Digest of Technical Papers, pp. 100–101.Google Scholar
  31. 31.
    Nakamura, Y., Asano, I., Hiratani, M., Saito, T., and Goto, H. (2001) Oxidation-resistant amorphous TaN barrier for MIM-Ta2O5 capacitors in giga-bit DRAMs, 2001 Symposium on VLSI Technology, Digest of Technical Papers, pp. 39–40.Google Scholar
  32. 32.
    Takeuchi, M., Inoue, K., Sakao, M., Ssakoh, T., Kitamura, C., Arai, S., Iizuka, T., Yamamoto, T., Shirai, H., Aoki, Y., Ijamada, M., Kubota, R., and Kishi, S. (2001) A 0.151 µm logic based embedded DRAM technology featuring 0.425 µm2 stacked cell using MIM (Metal-Insulator-Metal) capacitor, 2001 Symposium on VLSI Technology, Digest of Technical Papers, pp. 29–30.Google Scholar
  33. 33.
    Kim, Y.K., Lee, S.H., Choi, S.J., Park, H.B., Seo, Y.D., Chin, K.H., Kim, D., Lim, J.S., Kim, W.D., Nam, K.J., Cho, M.-H., Hwang, K.H., Kim, Y.S., Kim, S.S., Park, Y.W., Moon, J.T., Lee, S.I., and Lee, M.Y., (2000) Novel capacitor technology for high density stand-alone and embedded DRAMs, International Electron Devices Meeting 2000, Technical digest, pp. 369–372.Google Scholar
  34. 34.
    Park, I.-S., Lee, B.T., Choi, S.J., Im, J.S., Lee, S.H., Park, K.Y., Lee, J.W., Hyung, Y.W., Kim, Y.K., Park, H.S., Park, Y.W., Leem, S.I., and Lee, M.Y. (2000) Novel MIS Al2O3 capacitor as a prospective technology for Gbit DRAMs, 2000 Symposium on VLSI Technology, Digest of Technical Papers, pp. 42–43.Google Scholar
  35. 35.
    Kim, Y.K., Lee, S.M., Park, I.S., Park, C.S., Lee, S.I., and Lee, M.Y. (1998) Novel poly-Si/Al2O3/poly-Si for high density DRAMs, 1998 Symposium on VLSI Technology, Digest of Technical Papers, pp. 52–53.Google Scholar
  36. 36.
    Lutzen, J., Birner, A., Goldbach, M., Gutsche, M., Hecht, T., Jakschik, S., Orth, A. Sanger, A., Schroeder, U., Seidl, H., Sell, B., and Schumann, D. (2002) Integration of capacitor for sub-100-nm DRAM trench technology, 2002 Symposium on VLSI Technology Digest of Technical Papers, 178–179.Google Scholar
  37. 37.
    Lee, J.-H., Kim, Y.-S., Jung, H.-S., Lee, J.-N.-I., Kang, L.-K., and Suh, K.-P. (2002) Practical next generation solution for stand-alone and embedded DRAM capacitor, 2002 Symposium on VLSI Technology Digest of Technical Papers, 114–115.Google Scholar
  38. 38.
    Bottger, U. and Summerfelt, S. (2003) Ferroelectric Random Access Memories, in R. Waser (ed.), Nanoelectronics and Information Technology, Wiley-VCH Verlag GmbH & Co., pp. 565–588.Google Scholar
  39. 39.
    See for example: Sinharoy, S., Buhay, H., Francombe, M.H., and Lampe, D.R. (1993) BaMgF4 thin film development and processing for ferroelectric FETs, Integr. Ferroelectr. 3, 217–223.CrossRefGoogle Scholar
  40. 40.
    Ishiwara, H. (2001) Recent progress of FET-type ferroelectric memories, Integr. Ferroelectr. 34, 11–20.CrossRefGoogle Scholar
  41. 41.
    Fitsilis M., Kohlstad, H. Waser, R., et al (2004) A new concept for using ferroelectric transistors in nonvolatile memories, Integr. Ferroelectr. 60, 45–58.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • A.I. Kingon
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations