Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

Abstract

A scanning probe microscopy based technique has been developed for mapping variations in the polarizability of materials. A number of experiments illustrating the potential of this technique are presented. These include the image of a grating sample with alternating regions of materials with different dielectric constants. Next, the technique is used to study mechanical resonances and dynamics in microelectromechanical (MEM) structures. Finally, a stroboscopic image of an operating 434 MHz surface acoustic wave device shows that the instrument can detect dipoles at frequencies four orders of magnitude of the resonance frequency of the sensing cantilever. In this experiment the dipoles imaged result from the mechanical action of the surface acoustic wave on the piezoelectric substrate. The technique may be employed to produce images that display the local polarizability of materials as a function of frequency and we expect this technique to be useable at frequencies into the millimeter wave region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stern, J.E., Terris, B.D., Mamin H.J., and Rugar, D. (1988) Deposition and imaging of localized charge on insulator surfaces using a force microscope, Appl. Phys. Lett. 53, 2717–2719. Terris, B.D., Stern, J.E., Rugar, D., and Mamin, H.J. (1989) Contact electrification using force microscopy, Phys. Rev. Lett. 63, 2669–2672. Terris, B.D., Stern, J.E., Rugar, D., and Mamin, H.J. (1990) Localized charge force microscopy, J. Vac. Sci. Technol. A 8, 374—377. Weaver, J.M.R. and Abraham, D.W. (1991) High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561. Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923. Yokoyama, H. and Inoue, T. (1994) Scanning Maxwell stress microscope for nanmetre-scale surface electrostatic imaging of thin films, Thin Solid Films 242, 33–39.

    Article  ADS  Google Scholar 

  2. Bridges, G.E., Said, R.A., and Thomson, D.J. (1993) Heterodyne electrostatic force microscopy for non-contact high frequency integrated circuit measurement, Electron. Lett., 29, 1448–1449.

    Article  Google Scholar 

  3. Said, R., Mittal, M., Bridges, G.E., and Thomson, D.J. (1994) High frequency potential probe using electrostatic force microscopy, J. Vac. Sci Technol A 12, 2591–2594.

    ADS  Google Scholar 

  4. Malyshkin, P. Private Communication (July 2002) MikroMasch/NT-MDT, Tallinn, Estonia.

    Google Scholar 

  5. Bannon III, F.D., Clark, J.R., and Nguyen, C.T.-C. (2000) High-Q HF microelectronic filters, IEEE J. Solid-State Circuits 35, 512–526.

    Article  Google Scholar 

  6. Stowe, T.D. (2000) PhD Thesis, Stanford University CA, USA

    Google Scholar 

  7. Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982) Fundamentals of Acoustics 3/e, John Wiley & Sons NY, USA.

    Google Scholar 

  8. Rast, S., Wattinger, C., Gysin, U., and Meyer, E. (2000) The noise of cantilevers, Nanotechnology, 11, 169–172.

    Article  ADS  Google Scholar 

  9. (Lord) Rayleigh (1885) On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc. 17, 4–11.

    Article  Google Scholar 

  10. Acoustic Surface Waves (1978) in A. Oliner, (ed.), Topics in Applied Physics Vol. 24, Springer, Berlin.

    Google Scholar 

  11. Biryukov, S.V., et al (1995) Surface Acoustic Waves in Inhomogeneous Media, Springer Series on Wave Phenomena Vol. 20, Springer, Berlin.

    MATH  Google Scholar 

  12. Matthews, H. (ed.) (1977) Surface Wave Filters: Design, Construction and Use, Wiley, New York.

    Google Scholar 

  13. Gualtieri, J.G. and Kosinski, J.A. (1996) Large-area, real-time imaging system for surface acoustic wave devices, IEEE Trans. Instrum. Meas., 45, 872–878.

    Article  Google Scholar 

  14. Hesjedal, T. and Behme, G. (2001) High-resolution imaging of surface acoustic wave scattering, Appl. Phys. Lett. 78, 1948–1950.

    Article  ADS  Google Scholar 

  15. Behme, G. and Hesjedal, T. (2001) Influence of surface acoustic waves on lateral forces in scanning force microscopies, J. Appl. Phys., 89, 4850–4856.

    Article  ADS  Google Scholar 

  16. Hesjedal, T. and Behme, G. (2001) High-resolution imaging of a single circular surface acoustic wave source: Effects of crystal anisotropy, Appl. Phys. Lett. 79, 1054–1056.

    Article  ADS  Google Scholar 

  17. Voigt, P.U., Krauß, S., Chilla, E., and Koch, R. (2001) Surface acoustic wave investigation by ultrahigh vacuum scanning tunneling microscopy, J. Vac. Sci. Technol A 19, 1817–1821.

    ADS  Google Scholar 

  18. Roshchupkin, D.V. and Brunel, M. (1994) Scanning electron microscopy observation of surface acoustic wave propagation in the LiNbO3 crystals with regular domain structures, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 41, 512–517.

    Article  Google Scholar 

  19. Oliver, D.R., Pu, A., Thomson, D.J., and Bridges, G.E. (2001) Heterodyne electrostatic imaging of polarization due to a surface acoustic wave, Appl. Phys. Lett. 79, 3729–3731.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Oliver, D., Cheng, K., PU, A., Thomson, D., Bridges, G. (2005). Imaging Local Dielectric and Mechanical Responses with Dynamic Heterodyned Electrostatic Force Microscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_18

Download citation

Publish with us

Policies and ethics