Imaging Local Dielectric and Mechanical Responses with Dynamic Heterodyned Electrostatic Force Microscopy

  • D.R. Oliver
  • K.M. Cheng
  • A. PU
  • D.J. Thomson
  • G.E. Bridges
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


A scanning probe microscopy based technique has been developed for mapping variations in the polarizability of materials. A number of experiments illustrating the potential of this technique are presented. These include the image of a grating sample with alternating regions of materials with different dielectric constants. Next, the technique is used to study mechanical resonances and dynamics in microelectromechanical (MEM) structures. Finally, a stroboscopic image of an operating 434 MHz surface acoustic wave device shows that the instrument can detect dipoles at frequencies four orders of magnitude of the resonance frequency of the sensing cantilever. In this experiment the dipoles imaged result from the mechanical action of the surface acoustic wave on the piezoelectric substrate. The technique may be employed to produce images that display the local polarizability of materials as a function of frequency and we expect this technique to be useable at frequencies into the millimeter wave region.


scanning probe microscopy electrostatic force microscopy polarization dynamics nanotechnology micro-electromechanical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stern, J.E., Terris, B.D., Mamin H.J., and Rugar, D. (1988) Deposition and imaging of localized charge on insulator surfaces using a force microscope, Appl. Phys. Lett. 53, 2717–2719. Terris, B.D., Stern, J.E., Rugar, D., and Mamin, H.J. (1989) Contact electrification using force microscopy, Phys. Rev. Lett. 63, 2669–2672. Terris, B.D., Stern, J.E., Rugar, D., and Mamin, H.J. (1990) Localized charge force microscopy, J. Vac. Sci. Technol. A 8, 374—377. Weaver, J.M.R. and Abraham, D.W. (1991) High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561. Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K. (1991) Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923. Yokoyama, H. and Inoue, T. (1994) Scanning Maxwell stress microscope for nanmetre-scale surface electrostatic imaging of thin films, Thin Solid Films 242, 33–39.CrossRefADSGoogle Scholar
  2. 2.
    Bridges, G.E., Said, R.A., and Thomson, D.J. (1993) Heterodyne electrostatic force microscopy for non-contact high frequency integrated circuit measurement, Electron. Lett., 29, 1448–1449.CrossRefGoogle Scholar
  3. 3.
    Said, R., Mittal, M., Bridges, G.E., and Thomson, D.J. (1994) High frequency potential probe using electrostatic force microscopy, J. Vac. Sci Technol A 12, 2591–2594.ADSGoogle Scholar
  4. 4.
    Malyshkin, P. Private Communication (July 2002) MikroMasch/NT-MDT, Tallinn, Estonia.Google Scholar
  5. 5.
    Bannon III, F.D., Clark, J.R., and Nguyen, C.T.-C. (2000) High-Q HF microelectronic filters, IEEE J. Solid-State Circuits 35, 512–526.CrossRefGoogle Scholar
  6. 6.
    Stowe, T.D. (2000) PhD Thesis, Stanford University CA, USAGoogle Scholar
  7. 7.
    Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982) Fundamentals of Acoustics 3/e, John Wiley & Sons NY, USA.Google Scholar
  8. 8.
    Rast, S., Wattinger, C., Gysin, U., and Meyer, E. (2000) The noise of cantilevers, Nanotechnology, 11, 169–172.CrossRefADSGoogle Scholar
  9. 9.
    (Lord) Rayleigh (1885) On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc. 17, 4–11.CrossRefGoogle Scholar
  10. 10.
    Acoustic Surface Waves (1978) in A. Oliner, (ed.), Topics in Applied Physics Vol. 24, Springer, Berlin.Google Scholar
  11. 11.
    Biryukov, S.V., et al (1995) Surface Acoustic Waves in Inhomogeneous Media, Springer Series on Wave Phenomena Vol. 20, Springer, Berlin.zbMATHGoogle Scholar
  12. 12.
    Matthews, H. (ed.) (1977) Surface Wave Filters: Design, Construction and Use, Wiley, New York.Google Scholar
  13. 13.
    Gualtieri, J.G. and Kosinski, J.A. (1996) Large-area, real-time imaging system for surface acoustic wave devices, IEEE Trans. Instrum. Meas., 45, 872–878.CrossRefGoogle Scholar
  14. 14.
    Hesjedal, T. and Behme, G. (2001) High-resolution imaging of surface acoustic wave scattering, Appl. Phys. Lett. 78, 1948–1950.CrossRefADSGoogle Scholar
  15. 15.
    Behme, G. and Hesjedal, T. (2001) Influence of surface acoustic waves on lateral forces in scanning force microscopies, J. Appl. Phys., 89, 4850–4856.CrossRefADSGoogle Scholar
  16. 16.
    Hesjedal, T. and Behme, G. (2001) High-resolution imaging of a single circular surface acoustic wave source: Effects of crystal anisotropy, Appl. Phys. Lett. 79, 1054–1056.CrossRefADSGoogle Scholar
  17. 17.
    Voigt, P.U., Krauß, S., Chilla, E., and Koch, R. (2001) Surface acoustic wave investigation by ultrahigh vacuum scanning tunneling microscopy, J. Vac. Sci. Technol A 19, 1817–1821.ADSGoogle Scholar
  18. 18.
    Roshchupkin, D.V. and Brunel, M. (1994) Scanning electron microscopy observation of surface acoustic wave propagation in the LiNbO3 crystals with regular domain structures, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 41, 512–517.CrossRefGoogle Scholar
  19. 19.
    Oliver, D.R., Pu, A., Thomson, D.J., and Bridges, G.E. (2001) Heterodyne electrostatic imaging of polarization due to a surface acoustic wave, Appl. Phys. Lett. 79, 3729–3731.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • D.R. Oliver
    • 1
  • K.M. Cheng
    • 1
  • A. PU
    • 1
  • D.J. Thomson
    • 1
  • G.E. Bridges
    • 1
  1. 1.Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations