Nanometer-Scale Electronics and Storage

  • K.F. Kelly
  • Z.J. Donhauser
  • P.A. Lewis
  • R.K. Smith
  • P.S. Weiss
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 186)


The ability to control the placement of molecules is essential for the patterning and fabrication of nanoscale electronic devices. We apply selective chemistry and self-assembly in combination with conventional nanolithographic techniques to reach higher resolution, greater precision, and chemical versatility in the nanostructures that we create. We illustrate three successful approaches: (1) phase separation of self-assembled monolayers (SAMs) by terminal and internal functionalization, (2) phase separation of SAMs induced by post-adsorption processing and (3) control of molecular placement by insertion into a self-assembled monolayer. These methods demonstrate the possibilities of patterning films by exploiting the intrinsic properties of the molecules. We then employ these self-assembled monolayers as a means to isolate molecules with electronic function to determine the mechanisms of function, and the relationships between molecular structure, environment, connection, coupling, and function. Using self-assembly techniques in combination with scanning tunneling microscopy (STM) we are able to study candidate molecular switches individually and in small bundles. Alkanethiolate SAMs on gold are used as a host two-dimensional matrix to isolate and to insulate electrically the molecular switches. We then individually address and electronically probeeach moleculeusing STM. The conjugated molecules exhibit reversible conductance switching, manifested as a change in the topographic height in the STM images. The origins of switching and the relevant aspects of the molecular structure and environment required will be discussed.


Alkanethiolate SAMs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rai-Chaudhury, P. (1997) Handbook of Microlithography, Micromachining, and Microfabrication; SPIE: London.Google Scholar
  2. 2.
    Xia, Y.N. and Whitesides, G.M. (1998) Soft lithography, Angewandte Chemie, International Edition, 37, 551–575.CrossRefGoogle Scholar
  3. 3.
    Zhao, X.M., Xia, Y.N., and Whitesides, G.M. (1997) Soft lithographic methods for nano-fabrication, J. Mater. Chem. 7, 1069–1074.CrossRefGoogle Scholar
  4. 4.
    Becker, R.S., Golovchenko, J.A., and Swartzentruber, B. S. (1987) Atomic-scale surface modifications using a tunneling microscope, Nature 325, 419–421.CrossRefADSGoogle Scholar
  5. 5.
    Eigler, D.M. and Schweizer, E.K. (1990) Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526.CrossRefADSGoogle Scholar
  6. 6.
    Weiss, P.S. and Eigler, D.M. (1993) NATO ASI Series E: Applied Sciences, 235, 213–217.Google Scholar
  7. 7.
    Gimzewski, J. K. and Joachim, C. (1999) Nanoscale science of single molecules using local probes, Science 283, 1683–1688.CrossRefADSGoogle Scholar
  8. 8.
    Hla, S.-W., Bartels, L., Meyer, G., and Rieder, K.-H. (2000) Inducing all steps of a chemical reaction with a scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett. 85, 2777–2780.CrossRefADSGoogle Scholar
  9. 9.
    Ulman, A. (1991) An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, San Diego.Google Scholar
  10. 10.
    Ulman, A. (1996) Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96, 1533–1554.CrossRefGoogle Scholar
  11. 11.
    Nuzzo, R.G. and Allara, D.L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces, J. Amer. Chem. Soc. 105, 4481–4483.CrossRefGoogle Scholar
  12. 12.
    Allara, D.L. (1995) Critical issues in applications of self-assembled monolayers, Biosensors and Bioelectronics 10, 771–783.CrossRefGoogle Scholar
  13. 13.
    Bain, C.D. and Whitesides, G.M. (1989) Formation of monolayers by the adsorption of thiols on gold: Variation in the length of the alkyl chain, J. Amer. Chem. Soc. 111, 7164–7175.CrossRefGoogle Scholar
  14. 14.
    Bain, C.D. and Whitesides, G.M. (1989) A study by contact angle of the acid-base behavior of monolayers containing Ω-mercaptocarboxylic acids adsorbed on gold: An example of reactive spreading, Langmuir 5, 1370–1378.CrossRefGoogle Scholar
  15. 15.
    Dubois, L.H. and Nuzzo, R.G. (1992) Synthesis, structure, and properties of model organic surfaces, Annu. Rev.Phys. Chem. 43, 437–463.ADSGoogle Scholar
  16. 16.
    Poirier, G.E. (1997) Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Rev. 97, 1117–1127.CrossRefGoogle Scholar
  17. 17.
    Hong, S., Zhu, J., and Mirkin, C.A. (1999) Multiple ink nanolithography: Toward a multiple pen nanoplotter, Science 286, 523–525.CrossRefGoogle Scholar
  18. 18.
    Liu, G.-Y., Xu, S., and Qian, Y.L. (2000) Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc. Chem. Res. 33, 457–466.CrossRefGoogle Scholar
  19. 19.
    Zharnikov, M., Frey, S., Heister, K., and Grunze, M. (2000) Modification of alkanethiolate monolayers by low energy electron irradiation: Dependence on the substrate material and on the length and isotopic composition of the alkyl chains, Langmuir 16, 2697–2705.CrossRefGoogle Scholar
  20. 20.
    Gölzhäuser, A., Geyer, W., Stadler, V., Eck, W., Grunze, M., Edinger, K., Weimann, T., and Hinze, P. (2000) Nanoscale patterning of self-assembled monolayers with electrons, Journal of Vacuum Science & Technology B 18, 3414–3418.CrossRefADSGoogle Scholar
  21. 21.
    Heister, K., Zharnikov, M., Grunze, M., Johansson, L.S.O., and Ulman, A. (2001) Characterization of X-ray induced damage in alkanethiol monolayers by high-resolution photoelectron spectroscopy, Langmuir 17, 8–11.CrossRefGoogle Scholar
  22. 22.
    Collet, J., Tharaud, O., Chapoton, A., and Vuillaume, D. (2000) Low-voltage, 30 nm channel length, organic transistors with a self-assembled as gate insulating films, Appl. Phys. Lett. 76, 1941–1943.CrossRefADSGoogle Scholar
  23. 23.
    Collet, J. and Vuillaume, D. (1998) Nano-field effect transistor with an organic self-assembled monolayer as gate insulator, Appl. Phys. Lett. 73, 2681–2683.CrossRefADSGoogle Scholar
  24. 24.
    Boulas, C., Davidovits, J.V., Rondelez, F., and Vuillaume, D. (1996) Suppression of charge carrier tunneling through organic self-assembled monolayers, Phys. Rev. Lett. 76, 4797–4800.CrossRefADSGoogle Scholar
  25. 25.
    Lee, S.A., Yoshida, Y., Fukuyama, M., and Hotta, S. (1999) Phenyl-capped oligothiophenes: novel lightemitting materials with different molecular alignments in thin films, Synthetic Metals, 106, 39–43.CrossRefGoogle Scholar
  26. 26.
    Bain, C.D. and Whitesides, G.M. (1988) Formation of 2-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols, J. Amer. Chem. Soc. 110, 6560–6561.CrossRefGoogle Scholar
  27. 27.
    Bain, C.D., Evall, J., and Whitesides, G.M. (1989) Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group, and solvent, J. Amer. Chem. Soc. 111, 7155–7164.CrossRefGoogle Scholar
  28. 28.
    Folkers, J.P., Laibinis, P.E., Whitesides, G.M., and Deutch, J. (1994) Phase behavior of two-component self-assembled monolayers of alkanethiolates on gold, J. Phys. Chem. 98, 563–571.CrossRefGoogle Scholar
  29. 29.
    Smith, R.K., Reed, S.M., Lewis, P.A., Monnell, J.D., Clegg, R.S., Kelly, K.F., Bumm, L.A., Hutchison, J.E., and Weiss, P.S. (2001) Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol, J. Phys. Chem. B 105, 1119–1122.Google Scholar
  30. 30.
    Stranick, S.J., Parikh, A.N., Tao, Y.-T., Allara, D.L., and Weiss, P.S. (1994) Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains, J. Phys. Chem. 98, 7636–7646.CrossRefGoogle Scholar
  31. 31.
    Stranick, S.J., Atre, S.V., Parikh, A.N., Wood, M.C., Allara, D.L., Winograd, N., and Weiss, P.S. (1996) Nanometer-scale phase separation in mixed composition self-assembled monolayers, Nanotechnology 7, 438–442.CrossRefADSGoogle Scholar
  32. 32.
    Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178–180.CrossRefADSGoogle Scholar
  33. 33.
    Binnig, G., Quate, C.F., and Gerber, C. (1986) Atomic force microscope, Phys. Rev. Lett. 56, 930–933.CrossRefADSGoogle Scholar
  34. 34.
    Delamarche, E., Michel, B., Gerber, C., Anselmetti, D., Güntherodt, H.-J., Wolf, H., and Ringsdorf, H. (1994) Real-space observation of nanoscale molecular domains in self-assembled monolayers, Langmuir 10, 2869–2871.CrossRefGoogle Scholar
  35. 35.
    Anselmetti, D., Baratoff, A., Güntherodt, H.-J., Delamarche, E., Michel, B., Gerber, C., Kang, H., Wolf, H., and Ringsdorf, H. (1994) Domain and molecular superlattice structure of dodecanethiol self-assembled On Au(111), Europhys. Lett. 27, 365–370.CrossRefADSGoogle Scholar
  36. 36.
    Camillone, N., Eisenberger, P., Leung, T.Y.B., Schwartz, P., Scoles, G., Poirier, G.E., and Tarlov, M.J. (1994) New monolayer phases of n-alkanethiols self-assembled on Au(111): Preparation, surface characterization, and imaging, J. Chem. Phys. 101, 11031–11036.CrossRefADSGoogle Scholar
  37. 37.
    Bumm, L.A., Arnold, J.J., Charles, L.F., Dunbar, T.D., Allara, D.L., and Weiss, P.S. (1999) Directed self-assembly to create molecular terraces with molecularly sharp boundaries in organic monolayers, J. Amer. Chem. Soc. 121, 8017–8021.CrossRefGoogle Scholar
  38. 38.
    Clegg, R.S. and Hutchison, J.E. (1996) Hydrogen-bonding, self-assembled monolayers: Ordered molecular films for study of through-peptide electron transfer, Langmuir 12, 5239–5243.CrossRefGoogle Scholar
  39. 39.
    Clegg, R.S. and Hutchison, J.E. (1999) Control of monolayer assembly structure by hydrogen bonding rather than by adsorbate-substrate templating, J. Amer. Chem. Soc. 121, 5319–5327.CrossRefGoogle Scholar
  40. 40.
    Clegg, R.S., Reed, S.M., Smith, R.K., Barron, B.L., Rear, J.A., and Hutchison, J.E. (1999) The interplay of lateral and tiered interactions in stratified self-organized molecular assemblies, Langmuir 15, 8876–8883.CrossRefGoogle Scholar
  41. 41.
    Lewis, P.A., Smith, R.K., Kelly, K.F., Bumm, L.A., Reed, S.M., Clegg, R.S., Gunderson, J.D., Hutchison, J.E., and Weiss, P.S. (2001) The role of buried hydrogen bonds in self-assembled mixed composition thiols on Au{111}, J. Phys. Chem. B 105, 10630–10636.Google Scholar
  42. 42.
    Finklea, H.O., Ravenscroft, M.S., and Snider, D.A. (1993) Electrolyte and temperature effects on long-range electron-transfer across self-assembled monolayers, Langmuir 9, 223–227.CrossRefGoogle Scholar
  43. 43.
    Bumm, L.A., Arnold, J.J., Dunbar, T.D., Allara, D.L., and Weiss, P.S. (1999) Electron transfer through organic molecules, J. Phys. Chem. B 103, 8122–8127.Google Scholar
  44. 44.
    Weiss, P.S., Bumm, L.A., Dunbar, T.D., Burgin, T.P., Tour, J.M., and Allara, D.L. (1998) Molecular Electronics: Science and Technology 852, 145–168.Google Scholar
  45. 45.
    Arnold, J.J. (1997) Masters thesis, The Pennsylvania State University, University Park.Google Scholar
  46. 46.
    Tour, J.M. (2000) Molecular electronics: Synthesis and testing of components, Acc. Chem. Res. 33, 791–804.CrossRefGoogle Scholar
  47. 47.
    Cygan, M.T., Dunbar, T.D., Arnold, J.J., Bumm, L.A., Shedlock, N.F., Burgin, T.P., Jones, L., Allara, D.L., Tour, J.M., and Weiss, P.S. (1998) Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111}, J. Amer. Chem. Soc. 120, 2721–2732.CrossRefGoogle Scholar
  48. 48.
    Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones II, L., Allara, D.L., Tour, J.M., and Weiss, P.S. (1996) Are single molecular wires conducting?, Science 271, 1705–1707.ADSCrossRefGoogle Scholar
  49. 49.
    Langlais, V.J., Schlittler, R.R., Tang, H., Gourdon, A., Joachim, C., and Gimzewski, J.K. (1999) Spatially resolved tunneling along a molecular wire, Phys. Rev. Lett. 83, 2809–2812.CrossRefADSGoogle Scholar
  50. 50.
    Moresco, F., Meyer, G., Rieder, K.-H., Tang, H., Gourdon, A., and Joachim, C. (2001) Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching, Phys. Rev. Lett. 86, 672–675.CrossRefADSGoogle Scholar
  51. 51.
    Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., and Weiss, P.S. (2001) Conductance switching in single molecules through conformational changes, Science 292, 2303–2307.CrossRefGoogle Scholar
  52. 52.
    Joachim, C., Gimzewski, J.K., Schlittler, R.R., and Chavy, C. (1995) Electronic transparency of a single C60 molecule, Phys. Rev. Lett. 74, 2102–2105.CrossRefADSGoogle Scholar
  53. 53.
    Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., and Tour, J.M. (2001) Molecular random access memory cell, Appl. Phys. Lett. 78, 3735–3737.CrossRefADSGoogle Scholar
  54. 54.
    Chen, J., Wang, W., Reed, M.A., Rawlett, A.M., Price, D.W., and Tour, J.M. (2000) Room-temperature negative differential resistance in nanoscale molecular junctions, Appl. Phys. Lett. 77, 1224–1226.CrossRefADSGoogle Scholar
  55. 55.
    Chen, J., Reed, M.A., Rawlett, A.M., and Tour, J.M. (1999) Large on—off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552.CrossRefGoogle Scholar
  56. 56.
    Seminario, J.M., Zacarias, A.G., and Tour, J.M. (2000) Theoretical study of a molecular resonant tunneling diode, J. Amer. Chem. Soc. 122, 3015–3020.CrossRefGoogle Scholar
  57. 57.
    Seminario, J.M., Zacarias, A.G., and Tour, J.M. (1998) Molecular current-voltage characteristics, J. Amer. Chem. Soc. 120, 3970–3397.CrossRefGoogle Scholar
  58. 58.
    Tour, J.M. (1996) Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures`, Chem. Rev. 96, 537–553.CrossRefGoogle Scholar
  59. 59.
    Tour, J.M., Kozaki, M., and Seminario, J.M. (1998) Molecular scale electronics: A synthetic/computational approach to digital computing, J. Amer. Chem. Soc. 120, 8486–8493.CrossRefGoogle Scholar
  60. 60.
    Tour, J.M., Reinerth, W.A., Jones II, L., Burgin, T.P., Zhou, C.W., Muller, C.J., Deshpande, M.R., and Reed, M.A. (1998) Molecular Electronics: Science and Technology, 852, 197–204.Google Scholar
  61. 61.
    Di Ventra, M., Kim, S.G., Pantelides, S.T., and Lang, N.D. (2001) Temperature effects on the transport properties of molecules, Phys. Rev. Lett. 86, 288–291.CrossRefADSGoogle Scholar
  62. 62.
    Weck, M., Jackiw, J.J., Weiss, P.S., and Grubbs, R.H. (1998) Ring-opening metathesis polymerization from surfaces, Proceedings of Polymers, Materials Science, and Engineering 79, 72–73.Google Scholar
  63. 63.
    Weck, M., Jackiw, J.J., Rossi, R.R., Weiss, P.S., and Grubbs, R.H. (1999) Ring-opening metathesis polymerization from surfaces, J. Amer. Chem. Soc. 121, 4088–4089.CrossRefGoogle Scholar
  64. 64.
    Charles, L.F. (1999) Masters thesis, The Pennsylvania State University: University Park.Google Scholar
  65. 65.
    Sakaguchi, H., Kelly, K.F., Donhauser, Z.J., Lewis, P.A., and Weiss, P.S., manuscript in preparation.Google Scholar
  66. 66.
    Donhauser, Z.J., Price II, D.W., Tour, J.M., and Weiss, P.S. (2003) Control of alkanethiolate monolayer structure using vapor-phase annealing, J. Amer. Chem. Soc. 125, 11462–11463.CrossRefGoogle Scholar
  67. 67.
    Molecular Imaging Corp., Phoenix, AZ, USA.Google Scholar
  68. 68.
    Mantooth, B.A., Donhauser, Z.J., Kelly, K.F., and Weiss, P.S. (2002) Cross-correlation image tracking for drift correction and adsorbate analysis, Review of Scientific Instruments 73, 313–317.CrossRefADSGoogle Scholar
  69. 69.
    Herrmann, C.F. and Boland, J.J. (1999) Probing repulsive interactions on the Si(100)(2x1) surface by local tip-induced excitation, J. Phys. Chem. B 103, 4207–4211.Google Scholar
  70. 70.
    Akpati, H.C., Norlander, P., Lou, L., and Avouris, P. (1997) The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111), Surface Science 372, 9–20.CrossRefADSGoogle Scholar
  71. 71.
    Tao, Y.-T., Wu, C.C., Eu, J.Y., Lin, W.L., and Wu, K.C. (1997) Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold, Langmuir 13, 4018–4023.CrossRefGoogle Scholar
  72. 72.
    Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J.E. (1993) Structure and bonding of alkanethiolates on gold and silver surfaces: Implications for self-assembled monolayers, J. Amer. Chem. Soc. 115, 9389–9401.CrossRefGoogle Scholar
  73. 73.
    Kornilovitch, P.E. and Bratkovsky, A.M. (2001) Orientational dependence of current through molecular films, Phys. Rev. B 64, 5413–5417.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • K.F. Kelly
    • 1
    • 2
  • Z.J. Donhauser
    • 1
  • P.A. Lewis
    • 1
  • R.K. Smith
    • 1
  • P.S. Weiss
    • 1
  1. 1.Departments of Chemistry and PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Electrical EngineeringRice UniversityHoustonUSA

Personalised recommendations