Lith OGRAPHY Monolayer Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ulman, A. (1997) Introduction to Ultrathin Organic Films; From Langmuir-Blodgett to Self-Assembly, Academic, San Diego.Google Scholar
  2. 2.
    Bigelow, W.C., Pickett, D.l., and Zisman, W.A., (1946) Oleophobic monolayers. I. Films adsorbed from solution in nonpolar liquids J. Coll. Sci., 1, 513–518.CrossRefGoogle Scholar
  3. 3.
    Polymeropoulos, E.E. and Sagiv, J. (1978) Electrical conduction through adsorbed monolayers, J. Chem. Phys. 69, 1836–1847.CrossRefADSGoogle Scholar
  4. 4.
    Sagiv, J. (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces J. Am. Chem. Soc. 102, 92–98.CrossRefGoogle Scholar
  5. 5.
    Netzer, L. and Sagiv, J., (1983) A new approach to construction of artificial monolayer assemblies J. Am. Chem. Soc. 105, 674–676.CrossRefGoogle Scholar
  6. 6.
    Maoz, R., Netzer, L., Gun, J., and Sagiv, J., (1988) Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties” J. Chim. Phys. 85, 1059–1065.Google Scholar
  7. 7.
    Maoz, R., Sagiv, J., Degenhardt, D., Mohwald, H., and Quint, P. (1995) Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infra-red spectroscopy and x-ray scattering techniques, Supramol. Sci. 2, 9–24.CrossRefGoogle Scholar
  8. 8.
    Maoz, R., Matlis, S., Dimasi, E., Ocko, B.M., and Sagiv, J. (1996) Self-replicating amphiphilic monolayers Nature 384, 150–153.CrossRefADSGoogle Scholar
  9. 9.
    Maoz, R., Cohen, S.R., and Sagiv, J. (1999) Nanoelectrochemical patterning of monolayer surfaces — towards spatially defined self-assembly of nanostructures, Adv. Mater. 11, 55–61.CrossRefGoogle Scholar
  10. 10.
    Frydman, E., Cohen, H., Maoz, R., and Sagiv, J., (1997) “Monolayer damage in XPS measurements as Evaluated by Independent Methods, Langmuir 13, 5089–5016.CrossRefGoogle Scholar
  11. 11.
    Maoz, R., Cohen, H., Sagiv, J. (1998) Specific Nonthermal Chemical Structural Trnasformation induced by microwaves in a single amphiphilic bilayer self-assembled on silicon, Langmuir 14, 5988–5993.CrossRefGoogle Scholar
  12. 12.
    Lutwyche, M.I. Despont, M. Drechsler, U., Dürig, U., Häberle, W. Rothuizen, H., Stutz, R., Widmer, R., Binnig, G.K., and Vettiger, P. (2000) Highly parallel data storage system based on scanning probe arrays, Appl. Phys. Lett. 77, 3299–3301.CrossRefADSGoogle Scholar
  13. 13.
    Michel, B. Bernard, A., Bietsch, A., Delamarche, E. Geissler, M., Juncker, D., Kind, H., Renault, J.-P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H. (2001) Printing meets lithography: soft approaches to high resolution patterning, IBM Research Devlop. 45, 697–719.CrossRefGoogle Scholar
  14. 14.
    Liddle, J.A., Harriott, L.R., Novembre A.E., and Waskiewicz, W.K., (1999) SCALPEL: A projection electron-beam approach to sub-optical lithography, Technology Review-Bell Laboratories (available online — Scholar
  15. 15.
    Derra, S. (2001) Can lithography go to the extreme? R&D Research and Development July, 10–16.Google Scholar
  16. 16.
    Holmes, S. J., Mitchell, P. H., and Hakey M. C. (1997) Manufacturing with DUV lithography, IBM J. Res. Devel. 41, 7–20.CrossRefGoogle Scholar
  17. 17.
    Staufer, U. (1992), in H.-J. Guntherodt and R. Weisendanger (eds.) Scanning Tunneling Microscopy II, Springer-Verlag Berlin, Heidelberg, pp. 273.Google Scholar
  18. 18.
    Marrian, C.R.K., (1993) The Technology of Proximal Probe Lithography, S.P.I.E., Bellingham, WA., USA.Google Scholar
  19. 19.
    Mamin, H.J. and Rugar, D. (1992) Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005.CrossRefADSGoogle Scholar
  20. 20.
    Eigler, D.M., and Schweizer, E.K. (1990) Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526.CrossRefADSGoogle Scholar
  21. 21.
    Staufer, U., Wiesendanger, R., Eng, L., Rosenthaler, L., Hidber, H.-R. and H.-J. Güntherodt (1988) Surface modification in the naometer range by the scanning tunneling microscope, J. Vac. Sci. Technol. A 6, 537–539.CrossRefADSGoogle Scholar
  22. 22.
    Dagata, J.A., Schneir, J., Harary, H.H., Evans. C.J., Postek, M.T. and Bennet, J. (1990) Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001–2003.CrossRefADSGoogle Scholar
  23. 23.
    Day, H.C. and Allee, D.R. (1993) Selective area oxidation of silicon with an atomic force microscope, Appl. Phys. Lett. 62, 2691–2693.CrossRefADSGoogle Scholar
  24. 24.
    Snow, E.S., Campbell, P.M., and McMarr, P.J. (1993) Fabrication of silicon nanostructures with a scanning tunneling microscope, Appl. Phys. Lett. 63, 749–751.CrossRefADSGoogle Scholar
  25. 25.
    Perkins, F.K., Dobisz, E.A., Brandow, S.L., Kojoski. T.S., Calvert, J.M., Rhee, k.W., Kosakowski, J.E., and Marrian, C.R.K. (1994) Proximal probe study of self-assembled monolayer resist materials, J. Vac. Sci. Technol. B 12, 3725–3729.CrossRefGoogle Scholar
  26. 26.
    Avouris, P., Hertel, T. and Martel, R. (1997) Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Appl. Phys. Lett. 71, 285–287.CrossRefADSGoogle Scholar
  27. 27.
    Dagata, J.A., (1998) Understanding scanned probe oxidation of silicon, Appl. Phys. Lett. 73, 271–273.CrossRefADSGoogle Scholar
  28. 28.
    Garcia, Calleja, Perez-Murano (1998) Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation, Appl. Phys. Lett. 72, 2295–2297.CrossRefADSGoogle Scholar
  29. 29.
    Snow, E.S. and Campbell, P.M. (1994) Fabrication of Si nanostructures with an atomic force microscope, Appl. Phys. Lett. 64, 1932–1934.CrossRefADSGoogle Scholar
  30. 30.
    Snow, E.S. and Campbell, P.M. (1995) AFM fabrication of sub-10-nanometer metal-oxide devices with in-situ control of electrical properties, Science 270, 1639–1641.ADSCrossRefGoogle Scholar
  31. 31.
    Pérez-Murano, F., Abadal, G., Barniol, N., Servat, J. Gorostiza, P., and Sanz, F. (1995) Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy, J. App. Phys. 78, 6797–99; Wang, D., Tsau, L. and Wang, K.L. (1994) Nanometer-structure writing on Si(100) surfaces using a non-contact-mode atomic force microscope, Appl. Phys. Lett. 65, 1415–1417.CrossRefADSGoogle Scholar
  32. 32.
    See, for instance, Chemical Physics 281 issues 2–3 (2002).Google Scholar
  33. 33.
    Holmlin, R.E., Haag, R., Chabinye, M.L., Ismagilov, R.F., Cohen, A.E., Terfort, A., Rampi, M.A., and Whitesides, G.M., J. Am. Chem. Soc. (2001) Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers, 123, 5075–5085.CrossRefGoogle Scholar
  34. 34.
    Maoz, R., Frydman, E. Sagiv, J., Cohen, S.R. (2000) “Constructive nanolithography”: site-defined silver self-assembly on nanoelectrochemically patteerned monolayer templates, Adv. Mater. 6, 725–731.CrossRefGoogle Scholar
  35. 35.
    Piner, R.D., Zhu, J., Xu, F., Hong. S. and Mirkin, C.A. (1999) “Dip-Pen nanolithography” Science 283, 661–663.CrossRefGoogle Scholar
  36. 36.
    Maoz, R., Frydman, E., Cohen, S.R., and Sagiv, J. (2000) Constructive nanolithography: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures — a generic approach, Adv. Mater. 12, 725–731.CrossRefGoogle Scholar
  37. 37.
    Höppener, S., Maoz, R., Cohen, S.R., Chi, L.F., Fuchs, H. and Sagiv, J. (2002) Metal nanoparticles, nanowires and contact electrodes self-assembled on patterned monolayer templates — a bottom-up chemical approach, Adv. Mater. 14, 1036–1041.CrossRefGoogle Scholar
  38. 38.
    Liu, S., Maoz, R., Schmid, G., and Sagiv, J. (2002) Template guided self assembly of [Au55] clusters on nanolithographically defined monolayer patterns, Nanoletters 2, 1055–1060.ADSGoogle Scholar
  39. 39.
    Ederth, T. and Liedberg, B. (2000) Influence of wetting properties on the long-range hydrophobic interaction between self-assembled alkylthiolate monolayers, Langmuir 16 2177–84.CrossRefGoogle Scholar
  40. 40.
    Maoz, R., Frydman, E. Sagiv, J., Cohen, S.R. (2000) “Constructive nanolithography”: site-defined silver self-assembly on nanoelectrochemically patteerned monolayer templates, Adv. Mater. 6, 725–731.CrossRefGoogle Scholar
  41. 41.
    Adamson, A.W. (1990) Physical Chemistry of Surfaces John Wiley and Sons, Toronto.Google Scholar
  42. 42.
    Good, R.J. (1993) Contact angle, wetting, and adhesion: a critical review in Mittal, K.L. ed., Contact Angle, Wettability and Adhesion VSP, Utrecht, The Netherlands pp 3–37.Google Scholar
  43. 43.
    Owens, D.K. (1969) Estimation of the surface free energy of polymers, J. Appl. Pol. Sci. 13, 1741–1747.CrossRefGoogle Scholar
  44. 44.
    Frydman, E., Cohen, H. Maoz, R. and Sagiv, J. (1997) Monolayer damage in XPS measurements as evaluated by independent methods, Langmuir 13, 5089–5106.CrossRefGoogle Scholar
  45. 45.
    Pignataro, B., Licciardello, A., Cataldo, S. and Marletta, G. (2003) SPM and TOF-SIMS investigation of the physical and chemical modification induced by tip writing of self-assembled monolayers, Mat. Sci. Eng. C 23, 7–12.Google Scholar
  46. 46.
    Baptiste, A., Gibaud, A., Bardeau, J.F., Wen, K., Moaz, R. Sagiv, J., and Ocko, B.M. (2002) X-ray, micro-Raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers Langmuir 18, 3916–3922.CrossRefGoogle Scholar
  47. 47.
    Bowden, F.P., Moore, A.J.W., and Tabor, D., (1943) The ploughing and adhesion of sliding metals J. Appl. Phys. 11, 80–91.CrossRefADSGoogle Scholar
  48. 48.
    Warmack, R.J., Zheng, X.-Y., Thunday, T. and Allison, D.P. (1993) Friction effects in the deflection of atomic force microscope cantilevers, Rev. Sci. Instrum. 65, 394–399CrossRefADSGoogle Scholar
  49. 49.
    Grafstrom, S., Neitzert, M., Hagen, T., Ackermann, J., Neumann, R., Probst, O., and Wörtge, M., The role of topography and friction for the image contrast in lateral force microscopy, Nanotechnology 4, 143–151.Google Scholar
  50. 50.
    Spatz, J. P.; Sheiko, S.; Moller, M.; Winkler, R. G.; Reineker, P.; Marti, O. (1997) Tapping scanning force microscopy in air-theory and experiment, Langmuir 13, 4699–4703.CrossRefGoogle Scholar
  51. 51.
    Kühle, A., Sørensen, A.H., and Bohrl, J. (1997) Role of attractive forces in tapping tip force microscopy, J. Appl. Phys. 81, 6562–6569.CrossRefADSGoogle Scholar
  52. 52.
    Sugimura, H., Hanji, T., Hayashi, K. and Takai, O. (2002) Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: scanning probe electrochemistry toward nanolithography, Ultramicroscopy 91, 221–226.CrossRefGoogle Scholar
  53. 53.
    Dai H., Franklin, N. and Han, J. (1998) Exploiting the properties of carbon nanotubes for nanolithography, Appl. Phys. Lett. 73, 1508–1560.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • S.R. Cohen
    • 1
  • R. Maoz
    • 1
  • J. Sagiv
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations