Advertisement

Keywords

Piezoelectrics Pyroelectrics Ferroelectrics Incipient Ferroelectrics Ferroelectric Relaxors Applications Fabrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.stanford.edu/telemedicineGoogle Scholar
  2. 2.
    Valasek, J. (1921) Piezoelectric and allied phenomena in Rochelle Salt, Phys. Rev. 17, 475–481.CrossRefADSGoogle Scholar
  3. 3.
    Bush, G. (1987) Ealy history of ferroelectricity, Ferroelectrics 74, 267–284.Google Scholar
  4. 4.
    Moore, G.E. (1965) Cramming more components onto integrated circuits, Electronics 38, 1–4.Google Scholar
  5. 5.
    Zahn, D.R.T., Kampen, T.U. and Scholz, R. (2004) Organic Molecular Semiconductors: Structural, Optical, and Electronic Properties of Thin Films, Wiley and Sons.Google Scholar
  6. 6.
    Petty, H.R., Bryce, M.R., and M.C. Petty (1997) Introduction to Molecular Electronics, John Wiley.Google Scholar
  7. 7.
    Gardner, J.W., Varadan, V.K., and Wadelkarim, O.O.A. (2001) Microsensors, MEMS and Smart Devices, John Wiley.Google Scholar
  8. 8.
    Jaffe, B., Cook Jr., W.R., and Jaffe, H. (1971) Piezoelectric Ceramics, Academic Press, London.Google Scholar
  9. 9.
    Lines, M.E. and Glass, A.M. (1977) Principles and Applications of Ferroelectric and Related Materials, Clarendon Press, Oxford.Google Scholar
  10. 10.
    Herbert, J.M. (1982) Ferroelectric Transducers and Sensors, Gordon and Breach, London.Google Scholar
  11. 11.
    Moulson, A.J. and Herbert, J.M. (1990) Electroceramics, Materials, Properties, and Applications, Chapman and Hall, London.Google Scholar
  12. 12.
    Buchanan, R.C. (1991) Ceramic Materials for Electronics — Processing, Properties and Applications, 2nd Edition, Marcel Dekker, New York.Google Scholar
  13. 13.
    Xu, Y. (1991) Ferroelectric Materials and their Applications, North Holland, Amsterdam.Google Scholar
  14. 14.
    Uchino, K. (1997) Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, Norwell, MA, USA.Google Scholar
  15. 15.
    Hoffmann-Eifert, S. (2003) Dielectrics, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 33–57.Google Scholar
  16. 16.
    Uchino, K. (2000) Ferroelectric Devices, Marcel Dekker, New York.Google Scholar
  17. 17.
    Richter, D. and Trolier-McKinstry, S. (2003) Ferroelectrics, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 61–77Google Scholar
  18. 18.
    Haertling, G.H. (1999) Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc., 82, 797–818.CrossRefGoogle Scholar
  19. 19.
    Lemanov, V.V., Sotnikov, A.V., Smirnova, E.P., Weihnacht, M., and Kunze, R. (1999) Perovskite CaTiO3 as an incipient ferroelectric, Solid State Commun. 110, 611–614CrossRefADSGoogle Scholar
  20. 20.
    Fleury, P.A., Scott, J.F. and Worlock, J.M. (1968) Soft Phonon Modes and 110 °K Phase Transition in SrTiO3, Phys. Rev. Lett. 21, 16–19.CrossRefADSGoogle Scholar
  21. 21.
    Lytle, F.W. (1964) X-ray Diffractometry of Low-Temperature Phase Transformations in Strontium Titanate, J. Appl. Phys. 35, 2212–2215.CrossRefADSGoogle Scholar
  22. 22.
    Muller, K.A. and Burkard, H. (1979) SrTiO3: Intrinsic Quantum Paraelectric Below 4 K, Phys. Rev. B 19, 3593–3602ADSGoogle Scholar
  23. 23.
    Uwe, H., and Sakudo, T. (1976) Stress-Induced Ferroelectricity and Soft Phonon Modes in SrTiO3, Phys. Rev. B 13, 271–286ADSGoogle Scholar
  24. 24.
    Bednorz, J.G. and Muller, K.A. (1984) Sr1−xCaxTiO3: An XY Quantum Ferroelectric with Transition to Randomness Phys. Rev. Lett. 52, 2289–2292.CrossRefADSGoogle Scholar
  25. 25.
    Lemanov, V.V., Smirnova, E.P., Syrnikov, P.P., and Tarakanov, E.A. (1996) Phase transitions and glasslike behavior in Sr1−xBaxTiO3, Phys. Rev. B 54, 3151–3157.ADSGoogle Scholar
  26. 26.
    Lemanov, V.V., Smirnova, E.P., and Tarakanov, E.A. (1997) Ferroelectric properties of SrTiO3-PbTiO3 solid solutions, Sov. Phys. Solid State 39, 628–631CrossRefADSGoogle Scholar
  27. 27.
    Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y.J., and Nakamura, T. (1999) Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82, 3540–3543CrossRefADSGoogle Scholar
  28. 28.
    Cross, L.E., (1994) Relaxor ferroelectrics: an overview, Ferroelectrics 151, 305–320.Google Scholar
  29. 29.
    Zhou, L. (1996) Study of the relaxor behaviour of Pb(Fe2/3W1/3)O3 ceramics, Ph D Thesis, University of Aveiro, Portugal.Google Scholar
  30. 30.
    Ye, Z.G., Dong, M., and Zhang, L., (1999) Domain structures and phase transitions of the relaxor-based piezo-/ferroelectric (1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals, Ferroelectrics 229, 223.CrossRefGoogle Scholar
  31. 31.
    Smolenskii, G.A. and Isupov, V.A. (1954) Dokl. Akad. Nauk SSSR 9, 653; Smolenskii, G.A. Agranovskaya, A.I. (1958) Dielectric polarization and Losses of some complex compounds, Sov. Phys. — Tech. Phys. 3, 1380–1382.Google Scholar
  32. 32.
    Viehland, D., Lang, S.J., Cross, L.E., Wuttig, M., (1990) Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors, J. Appl. Phys. 68, 2916–2921; Viehland, D., Li, J.-F., Jang, S.J., Cross, L.E., and Wuttig, M. (1991) Dipolar-glass Model for Lead Magnesium Niobate, Phys. Rev. B 43, 8316–8320.CrossRefADSGoogle Scholar
  33. 33.
    Ye, Z.-G., Bing, Y., Gao, J., Bokov, A.A., Stephens, P., Noheda, B., and Shirane, G. (2003) Development of ferroelectric order in relaxor (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (0 ≤ x ≤ 0.15), Phys. Rev. B 67, 104104.ADSGoogle Scholar
  34. 34.
    Dkhil, B., Kiat, J.M., Calvarin, G., Baldinozzi, G., Vakhrushev, S.B. and Suard, E. (2002) Local and long range polar order in the relaxor-ferroelectric compounds PbMg1/3Nb2/3O3 and PbMg0.3Nb0.6Ti0.1O3, Phys. Rev. B 65, 024104.ADSGoogle Scholar
  35. 35.
    Kleemann W. and Klossner, A. (1993) Glassy and domain states in random dipolar systems, Ferroelectrics 150, 35–45.Google Scholar
  36. 36.
    Blinc, R., Dolinsek, J., Gregorovic, A., Zalar, B., Filipic, C., Kutnjak, Z., and Levstik, A., (2000) NMR and the spherical random bond-random field model of relaxor ferroelectrics, J. Phys. Chem. Sol. 61, 177–183.CrossRefADSGoogle Scholar
  37. 37.
    Cross, L.E. (1987) Relaxor ferroelectrics, Ferroelectrics 76, 241–267.Google Scholar
  38. 38.
    Gruverman, A., Auciello, O., and Tokumoto, H., (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy, Annu. Rev. Mater. Sci. 28, 101–123.CrossRefADSGoogle Scholar
  39. 39.
    Vakhrushev, S.B., Naberezhnov, A.A., Dkhil, B., Kiat, J.-M., Shwartsman, V., Kholkin, A., Dorner, B., and Ivanov, A. (2003) in P.K. Davies and D.J. Singh (eds.), Fundamental Physics of Ferroelectrics 2003, AIP Conf. Proc. No. 677, AIP, New York, pp. 74–83.Google Scholar
  40. 40.
    Bdikin, I.K., Shvartsman, V.V., and Kholkin, A.L. (2003) Nanoscale domains and local piezoelectric hysteresis in PbZn1/3Nb2/3O3-4.5%PbTiO3 single crystals, Appl. Phys. Lett. 83, 4232–4234.CrossRefADSGoogle Scholar
  41. 41.
    Shvartsman, V.V. and Kholkin, A.L. (2004) Domain structure of 0.8PbMg1/3Nb2/3O3-0.2PbTiO3 studied by piezoresponse force microscopy, Phys. Rev. B 69, 014102.Google Scholar
  42. 42.
    Randall, C.A., Bhalla, A.S., Shrout, T.R., and Cross, L.E. (1990) Classification and Consequences of Complex Lead Perovskite Ferroelectrics with Regard to B-site Cation Oorder, J. Mat. Res. 5, 829–834.ADSCrossRefGoogle Scholar
  43. 43.
    Reaney, I.M., Wise, P.L., Qazi, I. et al. (2003) Ordering and quality factor in 0.95BaZn1/3Ta2/3O3-0.05SrGa1/2Ta1/2O3 production resonators, J Eur. Ceram. Soc. 23, 3021–3034.CrossRefGoogle Scholar
  44. 44.
    Mitchell, R.H. (2002) Perovskites — Modern and Ancient, Almaz Press Inc., Ontario, Canada.Google Scholar
  45. 45.
    Ezhilvalavan, S. and Tseng, T.-Y. (2000) Progress in the developments of (Ba,Sr)TiO3 (BST) thin films for gigabit era DRAMs, Mater. Chem. Phys. 65, 227–248.CrossRefGoogle Scholar
  46. 46.
    Schroeder, H. and Kingon, A. (2003) High-permittivity materials for DRAMs, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 541–560Google Scholar
  47. 47.
    Klein, N. (2003) Microwave communication systems — novel approaches for passive devices, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 759–778.Google Scholar
  48. 48.
    Cao, W. and Cross, L.E. (1993) Theoretical model for the morphotropic phase boundary in lead zirconate — lead titanate solid solutions, Phys. Rev. B 47, 4825–4830.ADSGoogle Scholar
  49. 49.
    Du, X.H., Zheng, J., Belegundu, U., and Uchino, K. (1998) Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Appl. Phys. Lett. 72, 2421–2423.CrossRefADSGoogle Scholar
  50. 50.
    Newnham, R.E. and Ruschau, G.R. (1991) Smart Electroceramics, J. Am. Ceram. Soc. 74, 463–480.CrossRefGoogle Scholar
  51. 51.
    Kuwata, J., Uchino, K., and Nomura, S. (1982) Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single-Crystals, Jpn. J. Appl. Phys. 21, 1298–1302.CrossRefADSGoogle Scholar
  52. 52.
    Vilarinho, P.M., Zhou, L., Pöckl, M., Marques, N., and Baptista, J.L. (2000) Dielectric properties of Pb(Fe2/3W1/3)O3 — PbTiO3 solid solution, J. Am. Ceram. Soc. 83, 1149–1152.CrossRefGoogle Scholar
  53. 53.
    Mitoseriu, L., Vilarinho, P.M., and Baptista, J. L. (2002) Phase coexistence in Pb(Fe2/3W1/3)O3 — PbTiO3 solid solutions, Appl. Phys. Lett. 80, 4422–4424.CrossRefADSGoogle Scholar
  54. 54.
    Mitoseriu, L., Vilarinho, P.M., and Baptista, J.L. (2002) Properties of Pb(Fe2/3W1/3)O3 — PbTiO3 system in the range of morphotropic phase boundary, Jpn. J. Appl. Phys. 41, 7015–7020.CrossRefADSGoogle Scholar
  55. 55.
    Mitoseriu, L., Marre, D., Siri, A.S., and Nanni, P, (2003) Magnetic properties of PbFe2/3W1/3O3-PbTiO3 solid solutions, Appl. Phys. Lett. 83, 5509–5511.CrossRefADSGoogle Scholar
  56. 56.
    Zhenrong, L., Wu, A., Vilarinho, P.M., and Reaney, I.M. Core-shell domain structures in Pb(Fe2/3W1/3)O3-PbTiO3 at the morphotropic phase boundary, submitted to Chem. Mater. Google Scholar
  57. 57.
    Wajler, A., Vilarinho, P.M., Reaney, I.M. Effect of the Composition and the Preparation Technique on the Core-Shell-Structure Formation in (1−x) PbFe2/3W1/3O3 — x PbTiO3 Ceramics, submitted to J. Am. Ceram. Soc. Google Scholar
  58. 58.
    Smoleskii, G.A., Isupov, V.A., and Agranovskaya, A.I. (1961) Sov. Phys. Solid State 3, 651.Google Scholar
  59. 59.
    de Araújo, C.A.P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F. (1995) Fatigue-Free Ferroelectric Capacitors with Platinum-Electrodes, Nature, 374, 627–629.CrossRefADSGoogle Scholar
  60. 60.
    Kamba, S., Pokorny, J., Porokhonskyy, V., Petzelt, J., Moret, M.P., and Barber, Z.H. (2002) Ferroelastic phase in SrBi2Ta2O9 and study of the ferroelectric phase-transition dynamics, Appl. Phys. Lett. 81, 1056–1058.CrossRefADSGoogle Scholar
  61. 61.
    Gangulli, D. and Chatterjee, M. (1997) Ceramic powder preparation: a handbook, Kluwer Academic Publishers, Boston, USA, pp. 35–73.Google Scholar
  62. 62.
    Ring, T. (1996) Fundamentals of Ceramic Processing and Synthesis, Academic Press, San Diego, California, USA, pp. 95–110.CrossRefGoogle Scholar
  63. 63.
    Araujo, E.G., Neto, R.M.L., Pillis, M.F. et al. (2003), High energy ball milling processing, Mater. Sci. Forum 416-4, 128–133.CrossRefGoogle Scholar
  64. 64.
    Takai, S. and Esaka, T. (2002) Preparation of functional oxide materials by means of mechanical allowing — in view of ionic conductive oxides, Defect Diffusion Forum 206-2, 3–17.CrossRefGoogle Scholar
  65. 65.
    Stojanovic, B.D. (2003) Mechanochemical synthesis of ceramic powders with perovskite structure, J. Mater. Process Tech. 143, 78–81.CrossRefGoogle Scholar
  66. 66.
    Brankovic, Z., Brankovic, G., Jovalekic, C., et al., (2003) Mechanochemical synthesis of PZT powders, Mat. Sci. Eng. A 345, 243–248.Google Scholar
  67. 67.
    Mingos, D.M.P. (1992) Microwave synthesis of materials and their precursors, in L.L. Hench and J.K. West (eds.), Chemical processing of advanced materials, John Wiley, New York, pp. 717–725.Google Scholar
  68. 68.
    Rao, J. and Ramesh, P.D. (1995) Use of microwaves for the synthesis and processing of materials, Bull Mater. Sci. 18, 447–465.CrossRefGoogle Scholar
  69. 69.
    Adam, D. (2003) Microwave chemistry — out of the kitchen, Nature 421, 571–572.CrossRefADSGoogle Scholar
  70. 70.
    Tkach A., Vilarinho P. M., Avdeev M., Kholkin A. L, Baptista J. L., (2002) Synthesis by sol-gel and characterization of strontium titanate powders, Key Eng. Mater. 230–232, 40–43.CrossRefGoogle Scholar
  71. 71.
    Messing, G. L., Sabolsky, E. M., Kwon S., Trolier-McKinstry S.(2002) Templated grain growth of textured piezoelectric ceramics, Key-Engineering-Mater. 206–213, 1293–1296CrossRefGoogle Scholar
  72. 72.
    Sabolsky E. M., Trolier-McKinstry S., Messing, G. L (2003) Dielectric and piezoelectric properties of <001> fiber-textured PMN — PT ceramics, J. Appl. Phys. 93(7), 4072–4080.CrossRefADSGoogle Scholar
  73. 73.
    Duran C., Trolier-McKinstry S., Messing G. L. (2002) Dielectric and piezoelectric properties of textured Sr 0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth, J. Mat. Res., 17(9), 2399–409ADSCrossRefGoogle Scholar
  74. 74.
    Ohring, M. (2001) The Materials Science of Thin Films, Elsevier Science & Technology Books.Google Scholar
  75. 75.
    Auciello, O., Foster, C.M., and Ramesh, R. (1998) Processing technologies for ferroelectric thin films and heterostructures, Annu. Rev. Mater. Sci. 28, 501–531.CrossRefADSGoogle Scholar
  76. 76.
    Sheppard, L.M. (1992) Advances in processing of ferroelectric thin films, Ceram. Bull. 71, 85–95.Google Scholar
  77. 77.
    Schwartz, R.W., Boyle, T.J., Lockwood, S.J., Sinclair, M.B., Dimos, D., and Buchheit, C.D. (1995) Sol-Gel Processing of PZT Thin-Films — A Review of the State-of-the-Art and Process Optimization Strategies, Integr. Ferroelectr. 7, 259–277.CrossRefGoogle Scholar
  78. 78.
    Brinker C.J., Hurd A.J., Schunk P.R., Frye G.C., Ashley C.S., (1992) Review of Sol-Gel Thin-Film Formation, J. Non-Cryst. Solids 147, 424–436.CrossRefADSGoogle Scholar
  79. 79.
    Reaney, I.M., Taylor, D.V., and Brooks, K.G. (1998) Ferroelectric PZT thin films by sol-gel deposition, J. Sol-Gel Sci. Techn. 13, 813–820.CrossRefGoogle Scholar
  80. 80.
    Brinker, C.J. and Scherer, G.W. (1990) Sol — gel science: the physics and chemistry of sol-gel processing, Academic Press, New York.Google Scholar
  81. 81.
    Tuttle, B.A. and Schwartz, R.W. (1996) Solution deposition of ferroelectric thin films, MRS Bulletin 21, 49–54.Google Scholar
  82. 82.
    Prudenziati, M. (1991) Thick film technology, Sensor Actuat. A-Phys. 25–27, 227–234.Google Scholar
  83. 83.
    Kholkin, A.L., Wu, A. and Vilarinho, P.M. (2004) Piezoelectric Thick Film Composites: Processing and Applications, in Recent Research Developments in Materials Science, Research Sign Post, 5, pp. 1–24.Google Scholar
  84. 84.
    Akiyama, Y., Yamanaka, K., Fujisawa, E., and Kowata, Y. (1999) Development of lead zirconate titanate family thick films on various substrates, Jpn. J. Appl. Phys. 38, 5524–5527.CrossRefADSGoogle Scholar
  85. 85.
    Jeon, Y., Kim, D.G., No, K., Kim, S.J., and Chung, J., (2000) Residual stress analysis of Pt bottom electrodes on ZrO2/SiO2/Si and SiO2/Si substrates for Pb(ZrTi)O3 thick films, Jpn. J. Appl. Phys. 39, 2705–2709.CrossRefADSGoogle Scholar
  86. 86.
    Kubota, T., Tanaka, K., Sakabe, Y. (1999) Formation of Pb(Zr,Ti)O3-Pb(Zn,Nb)O3 system piezoelectric thick films in low-temperature firing process, Jpn. J. Appl. Phys. 38, 5535–5538.CrossRefADSGoogle Scholar
  87. 87.
    Glynne-Jones, P., Beeby, S.P., Dargie, P., Papakostas, T., and White, N.M., (2000) An investigation into the effect of modified firing profiles on the piezoelectric properties of thick-film PZT layers on silicon, Meas. Sci. Technol. 11, 526–531.CrossRefADSGoogle Scholar
  88. 88.
    Lubitz, K., Schuh, C., Steinkopff, T., and Wolff, A. (2002) Materials aspects for reliability and life time of PZT multilayer actuators, Piezoelectric Materials for the end user, Conference notes, Polecer Meeting, Interlaken, February 2002.Google Scholar
  89. 89.
    Nieto, E., Fernandez, J.F., Moure, C., and Duran, P. (1996) Multilayer piezoelectric devices based on PZT, J. Mater. Sci: Mater. Electron. 7, 55–60.CrossRefGoogle Scholar
  90. 90.
    Galassi, C., Roncari, E., Capiani, C., and Pinasco, P. (1997) PZT-based suspensions for tape casting, J. Eur. Ceram. Soc. 17, 367–371.CrossRefGoogle Scholar
  91. 91.
    Raeder, H., Simon, C., Chartier, T., and Toftegaard, H.L. (1994) Tape casting of zirconia for ion-conducting membranes: a study of dispersants, J. Eur. Ceram. Soc. 13, 485–491.CrossRefGoogle Scholar
  92. 92.
    Zhang, H.Z., Leppavuori, S., Uusimaki, A., Karjaleinen, P., and Rautioaho, R. (1994) Compositional and structural behaviour of screen-printed PZT thick films during rapid sintering, Ferroelectrics 154, 277–282.Google Scholar
  93. 93.
    Fernandez, J.F., Nieto, E., Moure, C., Duran, P., and Newnham, R.E. (1995) Processing and microstructure of porous and dense PZT thick films on Al2O3, J. Mater. Sci. 30, 5399–5404.CrossRefADSGoogle Scholar
  94. 94.
    Tanaka, K., Kubota, T., Sakabe, Y. (2002) Preparation of piezoelectric Pb(Zr,Ti)O3-Pb(Zn1/3Nb2/3)O3 thick films on ZrO2 substrates using low-temperature firing, Sensor Actuat. A-Phys. 96, 179–183.CrossRefGoogle Scholar
  95. 95.
    Sarkar, P. and Nicholson, P.S., (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics, J. Am. Ceram. Soc. 79, 1987–2002.CrossRefGoogle Scholar
  96. 96.
    Van de Biest, O.O. and Vandeperre, L.J. (1999) Electrophoretic deposition of materials, Annu. Rev. Mater. Sci. 29, 327–352.CrossRefADSGoogle Scholar
  97. 97.
    Boccaccini A.R. and Zhitomirsky, I. (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Curr. Opin. Solid St. M. 6, 251–260.CrossRefGoogle Scholar
  98. 98.
    Ngai, M., Yamashita, K., Umegaki, T., and Takuma, Y. (1993) Electrophoretic deposition of ferroelectric barium titanate thick films and their dielectrical properties, J. Am. Ceram. Soc. 76, 253–255.CrossRefGoogle Scholar
  99. 99.
    Zhang, J. and Lee, B.I. (2000) Electrophoretic deposition and characterization of micrometer-scale BaTiO3 based X/R dielectric thick films, J. Am. Ceram. Soc. 83, 2417–2422.CrossRefGoogle Scholar
  100. 100.
    Van Tassel, J. and Randall, C.A. (1999) Electrophoretic deposition and sintering of thin/thick PZT films, J. Eur. Ceram. Soc. 19, 955–958.CrossRefGoogle Scholar
  101. 101.
    Su, B., Ponton C.B. and Button, T.W. (2001) Hydrothermal and electrophoretic deposition of lead zirconate tinate (PZT) films, J. Eur. Ceram. Soc. 21, 1539–1542.CrossRefGoogle Scholar
  102. 102.
    Zhang, R.F., Ma, J., and Kong, L.B. (2002) Lead zirconate titanate thick film prepared by electrophoretic deposition from oxide mixture, J. Mat. Res. 17, 933–935.zbMATHADSCrossRefGoogle Scholar
  103. 103.
    Wu, A., Vilarinho, P.M., and Kingon, A.I. (2004) Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components, submitted to J. Am. Ceram. Soc. Google Scholar
  104. 104.
    Barrow, D.A., Petroff, T.E., and Sayer, M., (1996) US Patent 5,585,136.Google Scholar
  105. 105.
    Kholkine, A.L., Yarmarkin, V., Wu, A., Vilarinho, P.M., and Baptista, J.L. (2000) Thick piezoelectric coatings via modified sol-gel technique, Integr. Ferroelectr. 30, 245–259.CrossRefGoogle Scholar
  106. 106.
    Kholkin, A.L., Yarmarkin, V.K., Wu, A., Avdeev, M., Vilarinho, P.M., and Baptista, J.L. (2001) PZT — based thik film composites via a modified sol-gel route, J. Europ. Ceram. Soc. 21, 1535–1538.CrossRefGoogle Scholar
  107. 107.
    Vilarinho, P.M., Wu, A., Kholkin, A. (2003) Method for the production of ceramic composites thick films by sedimentation and infiltration of sol-gel solutions, Portuguese patent pending n.o 102 909.Google Scholar
  108. 108.
    Auciello, O., Scott, J.F., and Ramesh, R. (1998) The Physics Of Ferroelectric Memories, Physics Today 51, 22–27.CrossRefGoogle Scholar
  109. 109.
    Bottger, U., and Summerfelt, S.R. (2003) Ferroelectric Random Access Memories, in R. Waser (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Willey-VCH, Weinheim, pp. 567–588.Google Scholar
  110. 110.
    Whatmore, R.W., Patel, A., Shorrocks, N.M., and Ainger, F.W. (1990) Ferroelectric Materials for Thermal IR Sensors: State of Art and Perspectives, Ferroelectrics 104, 269–275.Google Scholar
  111. 111.
    Lyshevski, S.E. (2002) MEMS and NEMS: systems, devices, and structures, CRC Press, Boca Raton, USA.Google Scholar
  112. 112.
    Saffo, P. (2002) Untangling the Future, Business 2.0.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • P.M. Vilarinho
    • 1
  1. 1.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations