The Wonderful Crucible of Life's Creation: An Essay on Contingency versus Inevitability of Phylogenetic Development

  • R. Hengeveld


In this paper I discuss the question of whether life processes are contingent or inevitable, particularly when viewed on a long, phylogenetic scale. In my opinion, this contrast does not exist. Rather, the perception of a dichotomy is the result of differences in how measurements are made or in the way data processing is carried out. Observations made in one way result in the conclusion that phylogenetic development is contingent and that process outcomes are, as a consequence, entirely unforeseeable. Clear trends could have shown up with different observations. Furthermore, differences in approach or in philosophical attitude could also result in life processes appearing to be either contingent or inevitable. Such diverse and complex processes can probably best be studied by adopting an integrated approach.


Extinction Event Individual Organism Life Process Evolutionary Development Phylogenetic Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. M. and R. M. May (1986). The invasion, persistence and spread of infectious diseases within animal and plant communities. Philosophical Transactions of the Royal Society B314: 533–570.Google Scholar
  2. Avise, J. C. (2000). Phylogeography. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  3. Beatty, J. (1995). The evolutionary contingency thesis. In: Wolters, G. and J. G. Lennox (Eds). Concepts, Theories, and Rationality in the Biological Sciences. Universitätsverlag Konstanz, Konstanz. p. 44–81.Google Scholar
  4. Berezovsky, I. N. and E. N. Trifonov (in prep). Evolutionary aspects of protein structure and folding.Google Scholar
  5. Bernstein, C. and H. Bernstein (1997). Aging, Sex and DNA Repair. Academic Press, New York.Google Scholar
  6. Black, F. L. (1966). Measles endemicity in insular populations: critical community size and its evolutionary implication. Journal of Theoretical Biology 11: 207–211.CrossRefGoogle Scholar
  7. Brown, J. H. and B. A. Maurer (1986). Body size, ecological dominance, and Cope's Rule. Nature 324: 248–250.CrossRefGoogle Scholar
  8. Buss, L. W. (1987). The Evolution of Individuality. Princeton University Press, Princeton.Google Scholar
  9. Carrier, M. (1995). Evolutionary change and lawlikeness. Beatty on Biological Generalizations. In: Wolters, G. and J. G. Lennox (Eds). Concepts, Theories, and Rationality in the Biological Sciences. Universitätsverlag Konstanz, Konstanz. p. 83–97.Google Scholar
  10. Carroll, R. L. (1997). Patterns and Processes of Vertebrate Evolution. Cambridge University Press, Cambridge.Google Scholar
  11. Carroll, R. L. (2000). Towards a new evolutionary synthesis. Trends in Ecology and Evolution 15: 27–32.CrossRefGoogle Scholar
  12. Carroll, S. B. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature 409: 1102–1109.CrossRefGoogle Scholar
  13. Cliff, A., P. Haggett, J. K. Ord and G. R. Versey (1981). Spatial Diffusion. Cambridge University Press, Cambridge.Google Scholar
  14. Cliff, A., P. Haggett and M. Smallman-Raynor (1993). Measles. Blackwell, Oxford.Google Scholar
  15. Connor, E.F. (1986). Time series analysis of the fossil record. In: Raup, D. M. and D. Jablonski (Eds). Patterns and Processes in the History of Life. Springer, Heidelberg. pp. 119–148.Google Scholar
  16. Conway Morris, S. (1998). The Crucible of Creation. Oxford University Press, Oxford.Google Scholar
  17. Conway Morris, S. (2003). Life's Solution. Inevitable humans in a lonely world. Cambridge University Press, Cambridge.Google Scholar
  18. Conway Morris, S. and S. J. Gould (1998). Showdown on the Burgess Shale. Natural History 107: 48–55.Google Scholar
  19. Dobzhansky, Th. (1937). Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  20. Dobzhansky, Th. (1951). Genetics and the Origin of Species. Columbia University Press, New York, 3rd edition.Google Scholar
  21. Dobzhansky, Th. (1970). Genetics and the Origin of Species. 4th edition. Columbia University Press, New York.Google Scholar
  22. Eck, R. V. and M. O. Dayhoff (1966). Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152: 363–366.Google Scholar
  23. Eldredge, N. (1989). Macroevolutionary Dynamics. McGraw-Hill, New York.Google Scholar
  24. Eldredge, N. (1991). The Miner's Canary. Prentice Hall, New York.Google Scholar
  25. Eldredge, N. and S. J. Gould (1972). Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T. J. M. (Ed.). Models in Palaeobiology. Freeman and Cooper, San Francisco. pp. 82–115.Google Scholar
  26. Elliott, D. K. (Ed.) (1986). Dynamics of Extinction. Wiley, New York.Google Scholar
  27. Gingerich, P. D. (1983). Rates of evolution: effects of time and temporal scaling. Science 222: 159–161.Google Scholar
  28. Gould, S. J. (1967). Evolutionary patterns in pelycosauran reptiles: a factor-analytic study. Evolution 21: 385–401.CrossRefGoogle Scholar
  29. Gould, S. J. (1977). Ontogeny and Phylogeny. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  30. Gould, S. J. (1989). Wonderful Life. Hutchinson Radius, London.Google Scholar
  31. Gould, S. J. (1996). Full House, The spread of Excellence from Plato to Darwin. Harmony Books, New York.Google Scholar
  32. Gould, S. J. (1999). Rocks of Ages: Science and Religion on the Fullness of Life. Ballantine, New York.Google Scholar
  33. Gould, S. J. (2002). The Structure of Evolutionary Theory. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  34. Gould, S. J. and R. C. Lewontin (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205: 581–589.CrossRefGoogle Scholar
  35. Gould, S. J., D. M. Raup, J. J. Sepkoski, T. J. M. Schopf and D. S. Simberloff (1977). The shape of evolution: a comparison of real and random clades. Paleobiology 3: 23–40.Google Scholar
  36. Grant P. R. and B. R. Grant (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science 296: 707–711.CrossRefGoogle Scholar
  37. Hardin, G. (1960). The competitive exclusion principle. Science 131: 1292–1297.Google Scholar
  38. Hengeveld, R. (1989). Dynamics of Biological Invasions. Chapman and Hall, London.Google Scholar
  39. Hengeveld, R. (1990). Dynamic Biogeography. Cambridge University Press, Cambridge.Google Scholar
  40. Hengeveld, R. (1993). What to do about the North American invasion by the Collared Dove? American Field Ornithologist 64: 477–489.Google Scholar
  41. Hengeveld, R. (1994). Biogeographical ecology. Journal of Biogeography 21: 341–351.Google Scholar
  42. Hengeveld, R. (1997). Impact of biogeography on a population-biological paradigm shift. Journal of Biogeography 24: 541–547.Google Scholar
  43. Hengeveld, R. (1999). Modelling de impact of biological invasions. In: Sandlund, O. T., P. J. Schei and A. Viken (Eds). Invasive Species and Biodiversity Management. Kluwer, Dordrecht. pp. 127–138.Google Scholar
  44. Hengeveld, R. (2002). Methodology going astray in population biology. Acta Biotheoretica 50: 77–93.CrossRefGoogle Scholar
  45. Hengeveld, R. (2004). Book Review: Conway Morris' Inevitable Solution. Acta Biotheoretica 52: in press.Google Scholar
  46. Hengeveld, R. and M. A. Fedonkin (2004). Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization. Acta Biotheoretica 52: 105–154.CrossRefGoogle Scholar
  47. Hengeveld, R. and L. Hemerik (2002). Biogeography and dispersal. In: Bullock, J., R. E. Kenward and R. S. Hails (Eds). Dispersal Ecology. Blackwell Publishing, Oxford. pp. 303–324.Google Scholar
  48. Hengeveld, R. and F. Van den Bosch (1997). Invading into an ecologically nonuniform area. In: Huntley, B., W. Cramer, A. V. Morgan, H. C. Prentice and J. R. M. Allen (Eds). Past and Future Rapid Environmental Changes. Springer, Berlin. pp. 217–227.Google Scholar
  49. Hengeveld, R. and G. H. Walter (1999). The two co-existing ecological paradigms. Acta Biotheoretica 47: 141–170.CrossRefGoogle Scholar
  50. Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many species? American Naturalist 93: 145–159.CrossRefGoogle Scholar
  51. Infantosi, A. F. C. (1986). Interpretation of case studies in two communicable diseases using pattern analysis techniques. PhD Thesis, University of London.Google Scholar
  52. Jackson, S. T. and J. T. Overpeck (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26(Supplement): 194–220.Google Scholar
  53. King, M. (1993). Species Evolution. Cambridge University Press, Cambridge.Google Scholar
  54. Kolodner, R. D., C. D. Putnam and K. Myung (2002). Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552–557.CrossRefGoogle Scholar
  55. Kuhn, T. (1962). The Structure of Scientific Revolutions, University of Chicago Press, Chicago.Google Scholar
  56. Lande, R. (1976). Natural selection and random drift in phenotypic evolution. Evolution 30: 314–334.CrossRefGoogle Scholar
  57. Lewontin, R. (2000). The Triple Helix. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  58. Mandelbrot, B. B. (1977). The Fractal Geometry of Nature. Freeman, New York.Google Scholar
  59. Maritan, A., C. Micheletti, A. Trovato, and R. B. Banavar (2000). Optimal shapes of compact strings. Nature 406: 287–290.Google Scholar
  60. May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261: 459–467.CrossRefGoogle Scholar
  61. Mayr, E. (1963). Animal Species and Evolution. Harvard University Press, Cambridge Massachusetts.Google Scholar
  62. McShea, D. W. (1993). Evolutionary change in the morphological complexity in the mammalian vertebral column. Evolution 47: 730–740.CrossRefGoogle Scholar
  63. McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution 48: 1747–1763.CrossRefGoogle Scholar
  64. Miklos, G. L. G. and K. S. W. Campbell (1994). From protein domains to extinct phyla: Reverse-engineering approaches to the evolution of biological complexities. In: Bengtson, S. (Ed.). Early Life on Earth. Columbia University Press, New York. pp. 501–516.Google Scholar
  65. Miles, E. W. and D. R. Davies (2000). On the ancestry of barrels. Science 289: 1490.CrossRefGoogle Scholar
  66. Mitchell, J. M. (1976). An overview of climatic variability and its causal mechanisms. Quaternary Research 6: 481–493.Google Scholar
  67. Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. Journal of the Royal Statistical Society B 39: 283–326.Google Scholar
  68. Monod, J. (1971). Chance and Necessity. Knopf, New York.Google Scholar
  69. Moore, P. B. and T. A. Steitz (2002). The involvement of RNA in ribosome function. Nature 418: 229–235.CrossRefGoogle Scholar
  70. Paterson, H. E. H. (1985). The recognition concept of species. In: Vrba, E. (Ed.). Species and Speciation. Transvaal Museum, Pretoria. pp. 21–29.Google Scholar
  71. Raff, R. A. (1996). The Shape of Life. University of Chicago Press, Chicago.Google Scholar
  72. Raup, D. M. (1986). The Nemesis Affair. Norton, New York.Google Scholar
  73. Raup, D. M. (1991). Extinction: Bad Genes or Bad Luck? Norton, New York.Google Scholar
  74. Raup, D. M. and D. Jablonski (Eds) (1986). Patterns and Processes in the History of Life. Springer, Heidelberg.Google Scholar
  75. Raup, D. M., S. J. Gould, T. J. M. Schopf and D. S. Simberloff (1973). Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81: 525–542.CrossRefGoogle Scholar
  76. Rose, G. (1992). The Strategy of Preventive Medicine. Oxford University Press, Oxford.Google Scholar
  77. Rosenberg, A. (1985). The Structure of Biological Science. Cambridge University Press, Cambridge.Google Scholar
  78. Sayers, B. McA., B. G. Mansourian, T. Phan Tan and K. Bögel (1977). A pattern analysis study of a wildlife rabies epizootic. Medical Informatics 2: 11–34.CrossRefGoogle Scholar
  79. Schröpfer, R. and C. Engstfeld (1983). Die Ausbreitung des Bisams (Ondatra zibethicus Linne,1977, Rodentia, Arvicolidae) in der Bundesrepublik Deutschland. Zeitschrift für angewandte Zoologie 70: 13–37.Google Scholar
  80. Simpson, G. G. (1953). The Major Features of Evolution. Columbia University Press, New York.Google Scholar
  81. Stanley, S. M. (1987). Extinction. Freeman, New York.Google Scholar
  82. Trifonov, E. N. (1999). Elucidating sequence codes: three codes for evolution. Annals of the New York Academy of Science 870: 330–338.CrossRefGoogle Scholar
  83. Van den Bosch, F., R. Hengeveld and J. A. J. Metz (1992). Analysing the velocity of animal range expansion. Journal of Biogeography 19: 135–150.Google Scholar
  84. Van Peursen, C. A. (1970). De Strategie van de Cultuur. Elsevier, Amsterdam.Google Scholar
  85. Van Valen, L. (1973). A new evolutionary law. Evolution Theory 1: 1–30.Google Scholar
  86. Vermeij, G. J. (1987). Evolution and Escalation. Princeton University Press, Princeton.Google Scholar
  87. Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81: 229–236.Google Scholar
  88. Walter, G. H. and R. Hengeveld (2000). The structure of the two ecological paradigms. Acta Biotheoretica 48: 15–46.CrossRefGoogle Scholar
  89. Walter, G. H. and H. E. H. Paterson (1995). Levels of understanding in ecology: interspecific competition and community ecology. Australian Journal of Ecology 20: 463–466.Google Scholar
  90. Willis, K. J. and J. C. McElwain (2002). The Evolution of Plants. Oxford University Press, Oxford.Google Scholar
  91. Wright, S. (1955). Classification of the factors of evolution. Cold Spring Harbor Symposia of Quantitative Biology 20: 16–24D.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • R. Hengeveld
    • 1
  1. 1.Department of EcotoxicologyVrije Universiteit AmsterdamAmsterdam

Personalised recommendations