Advertisement

Resilience and Persistence in the Context of Stochastic Population Models

  • Johan Grasman
  • Onno A. van Herwaarden
  • Thomas J. Hagenaars
Chapter

Abstract

The resilience of an ecological system is defined by the velocity of the system as it returns to its equilibrium state after some perturbation. Since the system does not arrive exactly at the equilibrium within a finite time, the definition is based on the time needed to decrease the distance to the equilibrium with some fraction. In this study it is found that for stochastic populations this arbitrarily chosen function disappears because the equilibrium point can be replaced by a small (confidence) domain containing the equilibrium. The size of this domain is a measure for the (local) persistence of the system. This method is fully worked out for the stochastic logistic equation as well as for a prey-predator system.

Keywords

resilience persistence ecosystem Fokker-Planck equation logistic equation prey-predator system epidemiology 

References

  1. Carpenter, S., B. Walker, J. M. Anderies and N. Abel (2001). From metaphor to measurement: Resilience of what to what? Ecosystems 4: 765–781.CrossRefGoogle Scholar
  2. Cropp, R., and A. Gabric (2002). Do ecosystems maximize resilience? Ecology 83: 2019–2026.CrossRefGoogle Scholar
  3. DeAngelis, D. L. (1992). Dynamics of Nutrient Cycling and Food Webs. Chapman & Hall, London.Google Scholar
  4. Grasman, J., and O. A. van Herwaarden (1999). Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications. Springer-Verlag, Heidelberg.Google Scholar
  5. Grasman, J., and M. J. Huiskes (2001). Resilience and critical stock size in a stochastic recruitment model. Journal of Biological Systems 9: 1–12.CrossRefGoogle Scholar
  6. Grasman, J., F. van den Bosch and O. A. van Herwaarden (2001). Mathematical conservation ecology: a one predator — two prey system as case study. Bulletin of Mathematical Biology 6: 259–269.CrossRefGoogle Scholar
  7. Grimm, V., and C. Wissel (1997). Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109: 323–334.CrossRefGoogle Scholar
  8. Hagenaars, T. J., C. A. Donnelly, and N. M. Ferguson (2003). Spatial heterogeneity and the persistence of infectious diseases. preprint.Google Scholar
  9. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.CrossRefGoogle Scholar
  10. Holling, C. S.(1996). Engineering resilience vs. ecological resilience. In: Schulze, P. C. (Ed.). Engineering within Ecological Constraints. National Academy Press, Washington DC. pp. 31–43.Google Scholar
  11. Ives, A. R. (1995). Measuring resilience in stochastic systems. Ecological Monographs 65: 217–233.CrossRefGoogle Scholar
  12. Ludwig, D., B. Walker and C. S. Holling (1997). Sustainability, stability and resilience. Ecology and Society 1: http://www.ecologyandsociety.org/vol1/iss1/art7/.Google Scholar
  13. Nåsell, I. (1999). On the time to extinction in recurrent epidemics. Journal of the Royal Statistical Society B 61: 309–330.CrossRefGoogle Scholar
  14. Pimm, S. L. (1993). Nature's short sharp shocks. Current Biology 3: 288–290.CrossRefGoogle Scholar
  15. Peterson, G., C. R. Allen and C. S. Holling (1998). Ecological resilience, biodiversity and scale. Ecosystems 1: 6–18.CrossRefGoogle Scholar
  16. Roozen, H. (1987). Equilibrium and extinction in stochastic population dynamics. Bulletin of Mathematical Biology 49: 671–696.CrossRefGoogle Scholar
  17. Van Herwaarden, O. A. (1997). Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. Journal of Mathematical Biology 35: 793–813.CrossRefGoogle Scholar
  18. Van Herwaarden, O. A., and N. J. van der Wal (2002). Extinction time and age of an allele in a large finite population. Theoretical Population Biology 61: 311–318.CrossRefGoogle Scholar
  19. Van Kampen, N. G. (1995). The turning of magnetotactic bacteria. Journal of Statistical Physics 80: 23–34.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Johan Grasman
    • 1
  • Onno A. van Herwaarden
    • 2
  • Thomas J. Hagenaars
    • 3
  1. 1.Department of Mathematical and Statistical MethodsWageningen UniversityWageningen
  2. 2.Department of Mathematical and Statistical MethodsWageningen UniversityWageningen
  3. 3.Division of Infectious Diseases, Animal Sciences GroupWageningen UniversityWageningen

Personalised recommendations