Skip to main content

Immunophenotypic Characterization of Infiltrating Poly- and Mononuclear Cells in Childhood Brain Tumors

  • Chapter
  • 506 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miescher S, Whiteside TL, de Tribolet N, von Fliedner V: In situ characterization, clonogenic potential, and anti-tumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J Neurosurg 68: 438–448, 1988.

    PubMed  CAS  Google Scholar 

  2. Ruiter DJ, Bhan AK, Harrist TJ, Sober AJ, Mihm JC Jr: Major histocompatibility antigens and mononuclear inflammatory infiltrates in benign nevomelanocytic proliferations and malignant melanoma. J Immunol 129: 2808–2815, 1982.

    PubMed  CAS  Google Scholar 

  3. Shimokawara I, Imamura M, Yamanaka N, Ishii Y, Kikuchi K: Identification of lymphocyte subpopulations in human breast cancer tissue and its significance: An immunoperoxidase study with anti-human T-and B-cell sera. Cancer 49: 1456–1464, 1982.

    PubMed  CAS  Google Scholar 

  4. Kornstein MJ, Brooks JS, Elder DE: Immunoperoxidase localization of lymphocyte subsets in the host response to melanoma and nevi. Cancer Res 43: 2749–2753, 1983.

    PubMed  CAS  Google Scholar 

  5. von Hanwehr RI, Hofman FM, Taylor CR, Apuzzo ML: Mononuclear lymphoid populations infiltrating the microenvironment of primary CNS tumors: Characterization of cell subsets with monoclonal antibodies. J Neurosurg 60: 1138–1147, 1984.

    Google Scholar 

  6. Hiratsuka H, Imamura M, Kasai K, Kamiya H, Ishii Y, Kohama G, Kikuchi K: Lymphocyte subpopulations and T-cell subsets in human oral cancer tissues: Immunohistologic analysis by monoclonal antibodies. Am J Clin Pathol 81: 464–470, 1984.

    PubMed  CAS  Google Scholar 

  7. Rowe CJ, Beverley PC: Characterization of breast cancer infiltrate using monoclonal antibodies to human leukocyte antigens. Br J Cancer 49: 149–159, 1984.

    PubMed  CAS  Google Scholar 

  8. Paine JT, Handa H, Yamasaki T, Yamashita J, Miyatake S: Immunohistochemical analysis of infiltrating lymphocytes in central nervous system tumors. Neurosurg 18

    Google Scholar 

  9. Stevens A, Kloter I, Roggendorf W: Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61: 738–743, 1988.

    PubMed  CAS  Google Scholar 

  10. Chin Y, Janseens J, Vandepitte J, Vandenbrande J, Opdebeek L, Raus J: Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Res 12: 1463–1466, 1992.

    PubMed  CAS  Google Scholar 

  11. Dietl J, Horny HP, Ruck P, Kaiserling E: Dysgerminoma of the ovary. An immunohistochemical study of tumor-infiltrating lymphoreticularcells and tumor cells. Cancer 71: 2562–2568, 1993.

    PubMed  CAS  Google Scholar 

  12. Finke JH, Rayman P, Hart L, Alexander JP, Edinger MG, Tubbs RR, Klein E, Tuason L, Bokowski RM: Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferongamma secretion, and proliferation. J Immunother Emph Tumor Immunol 15: 91–104, 1994.

    CAS  Google Scholar 

  13. Maccalli C, Mortarini R, Parmiani G, Anichini A: Multiple sub-sets of CD4+ and CD8+ cytotoxic T-cell clones directed to autologous human melanoma identified by cytokine profiles. Int J Cancer 57: 56–62, 1994.

    PubMed  CAS  Google Scholar 

  14. Zhang BX: Obsevation on the phenotypic changes of tumor-infiltrating lymphocytes (TIL) during cultivation in vitro. Chinese J Pathol 21: 281–283, 1992.

    CAS  Google Scholar 

  15. Shilyansky J, Nishimura MI, Yannelli JR, Kawakami Y, Jacknin LS, Charmley P, Rosenberg SA: T-cell receptor usage by melanoma-specific clonal and highly oligoclonal tumor-infiltrating lymphocyte lines. Proc Natl Acad Sci USA 91: 2829–2833, 1994.

    PubMed  CAS  Google Scholar 

  16. Kuppner MC, Hamou MF, de Tribolet N: Immunohistological and functional analyses of lymphoid infiltrates in human glioblastomas. Cancer Res 48: 6926–6932, 1988.

    PubMed  CAS  Google Scholar 

  17. Rosenberg SA, Spiess P, Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318–1321, 1986.

    PubMed  CAS  Google Scholar 

  18. Sensi M, Salvi S, Castelli C, Maccali C, Mazzocchi A, Mortarini R, Nicolini G, Herlyn M, Parmiani G, Anichini A: T cell receptor (TCR) structure of autologous melanoma-reactive cytotoxic T lymphocyte (CTL) clones: tumor-infiltrating lymphocytes overexpress in vivo the TCR β chain sequence used by an HLA-A2-restricted and melanocyte-lineage-specific CTL clone. J Exp Med 178: 1231–1246, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Peoples GE, Yoshino I, Douville CC, Andrews JV, Goedegebuure PS, Eberlein TJ: TCR V β 3+ and V β 6+ CTL recognize tumor-associated antigens related to HER2/neu expression in HLA-A2+ ovarian cancers. J Immunol 152: 4993–4999, 1994.

    PubMed  CAS  Google Scholar 

  20. Rodolfo M, Castelli C, Bassi C, Accornero P, Sensi M, Parmiani G: Cytotoxic T lymphocytes recognize tumor antigens of a murine colonic carcinoma by using different T-cell receptors. Int J Cancer 57: 440–447, 1994.

    PubMed  CAS  Google Scholar 

  21. Zocchi MR, Ferrarini M, Migone N, Casorati G: T-cell receptor V delta gene usage by tumour reactive gamma delta T lymphocytes infiltrating human lung cancer. Immunol 81: 234–239, 1994.

    CAS  Google Scholar 

  22. Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ: Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Becker JC, Termeer C, Schmidt RE, Brocker EB: Soluble intercellular adhesion molecule-1 inhibits MHC-restricted specific T cell/tumor interaction. J Immunol 151: 7224–7232, 1993.

    PubMed  CAS  Google Scholar 

  24. Mule JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA: Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 26: 95–100, 1988.

    PubMed  CAS  Google Scholar 

  25. Sporn MB, Roberts AB, Wakefield LM, Assoian RK: Transforming growth factor-beta: biological function and chemical structure. Science 233: 532–534, 1986.

    PubMed  CAS  Google Scholar 

  26. Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gambacorti-Passerini C, Fossati-Bellani F, Parmiani G: Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunol Immunother 34: 241–251, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Cepek KL, Parker CM, Madara JL, Brenner MB: Integrin aEb7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol 150: 3459–3470, 1993.

    PubMed  CAS  Google Scholar 

  28. Gelb AB, Smoller BR, Warnke RA, Picker LJ: Lymphocytes infiltrating primary cutaneous neoplasms selectively express the cutaneous lymphocyte-associated antigen (CLA). Amer J Pathol 142: 1556–1564, 1993.

    CAS  Google Scholar 

  29. Roberts AI, O’Connell SM, Ebert EC: Intestinal intra-epithelial lymphocytes bind to colon cancer cells by HML-1 and CD11a. Cancer Res 53: 1608–1611, 1993.

    PubMed  CAS  Google Scholar 

  30. Ward PA, Varani J: Mechanisms of neutrophil-mediated injury. 5th International ANCA Workshop, 1993.

    Google Scholar 

  31. Yamamoto H, Hirayama M, Genyea C, Kaplan J: TGF-beta mediates natural suppressor activity of IL-2-activated lymphocytes. J Immunol 152: 3842–3847, 1994.

    PubMed  CAS  Google Scholar 

  32. Chatani Y, Tanimura S, Miyoshi N, Hattori A, Sato M, Kohno M: Cell type-specific modulation of cell growth by transforming growth factor beta 1 does not correlate with mitogen-activated protein kinase activation. J Biol Chem 270: 30686–30692, 1995.

    PubMed  CAS  Google Scholar 

  33. Tamada K, Harada M, Ito O, Takenoyama M, Mori T, Matsuzaki G, Nomoto K: The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta. Immunology 89: 627–635, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Shemesh J, Ehrlich R: Aberrant biosynthesis and transport of class I major histocompatibility complex molecules in cells transformed with highly oncogenic human adenoviruses. J Biol Chem 268: 15704–15711, 1993.

    PubMed  CAS  Google Scholar 

  35. Becker JC, Brocker EB: Lymphocyte-melanoma interaction: role of surface molecules. Recent Results Cancer Res 139: 205–214, 1995.

    PubMed  CAS  Google Scholar 

  36. Kleinman GM, Zagzag D, Miller DC: Diagnostic use of immunohistochemistry in neuropathology. Neurosurg Clin N Am 5: 97–126, 1994.

    PubMed  CAS  Google Scholar 

  37. Szymas J: Diagnostic immunohistochemistry of tumors of the central nervous system. Folia Neuropathol 32: 209–214 1994.

    PubMed  CAS  Google Scholar 

  38. Taylor CR: Quality assurance and standardization in immunohistochemistry. A proposal for the annual meeting of the Biological Stain Commission, June, 1991. Biotech Histochem 67: 110–117, 1992.

    PubMed  CAS  Google Scholar 

  39. Stemmer-Rachamimov AO, Louis DN: Histopathologic and immunohistochemical prognostic factors in malignant gliomas. Curr Opin Oncol 9: 230–234, 1997.

    PubMed  CAS  Google Scholar 

  40. Jay V, Edwards V, Halliday W, Rutka J, Lau R: “Polyphenotypic” tumors in the central nervous system: problems in nosology and classification. Pediatr Pathol Lab Med 17: 369–389, 1997.

    PubMed  CAS  Google Scholar 

  41. Beckmann MJ, Prayson RA: A clinicopathologic study of 30 cases of oligoastrocytoma including p53 immunohistochemistry. Pathology 29: 159–164, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Krouwer HG, van Duinen SG, Kamphorst W, van der Valk P, Algra A: Oligoastrocytomas: a clinicopathological study of 52 cases. J Neurooncol 33: 223–238, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Hirose T, Schneithauer BW, Lopes MB, Gerber HA, Altermatt HJ, VandenBerg SR: Ganglioglioma: an ultrastructural and immunohistochemical study. Cancer 79: 989–1003, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Baker DL, Molenaar WM, Trojanowski JQ, Evans AE, Ross AH, Rorke LB, Packer RJ, Lee VM, Pleasure D: Nerve growth factor receptor expression in peripheral and central neuroectodermal tumors, other pediatric brain tumors, and during development of the adrenal gland. Am J Pathol 139: 115–122, 1991.

    PubMed  CAS  Google Scholar 

  45. Kokunai T, Sawa H, Tamaki N: Functional analysis of trk proto-oncogene product in medulloblastoma cells. Neurol Med Chir 36: 796–804, 1996.

    CAS  Google Scholar 

  46. Pruim J, Willemsen AT, Molenaar WM, van Waarde A, Paans AM, Heesters MA, Go KG, Visser GM, Franssen EJ, Vaalburg W: Brain tumors: L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 197: 221–226, 1995.

    PubMed  CAS  Google Scholar 

  47. de Wolde H, Pruim J, Mastik MF, Koudstaal J, Molenaar WM: Proliferative activity in human brain tumors: comparison of histopathology and L-[1-(11)C]tyrosine PET. J Nucl Med 38: 1369–1374, 1997.

    PubMed  Google Scholar 

  48. Sallinen P, Miettinen H, Sallinen SL, Haapasalo H, Helin H, Kononen J: Increased expression of telomerase RNA component is associated with increased cell proliferation in human astrocytomas. Am J Pathol 150: 1159–1164, 1997.

    PubMed  CAS  Google Scholar 

  49. Kyritsis AP, Bondy ML, Hess KR, Cunningham JE, Zhu D, Amos CJ, Yung WK, Levin VA, Bruner JM: Prognostic significance of p53 immunoreactivity in patients with glioma. Clin Cancer Res 1: 1617–1622, 1995.

    PubMed  CAS  Google Scholar 

  50. Korshunov AG, Sycheva RV: An immunohistochemical study of the expression of the oncoprotein p53 in astrocytic gliomas of the cerebral hemispheres. Arkh Patol 58: 37–42, 1996.

    PubMed  CAS  Google Scholar 

  51. Bhattacharjee MB, Bruner JM: p53 protein in pediatric malignant astrocytomas: a study of 21 patients. J Neurooncol 32: 225–233, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Ng HK, Lo SY, Huang DP, Poon WS: Paraffin section p53 protein immunohistochemistry in neuroectodermal tumors. Pathology 26: 1–5, 1994.

    PubMed  CAS  Google Scholar 

  53. Bodey B, Gröger AM, Bodey B Jr, Siegel SE, Kaiser HE: Immunocytochemical detection of p53 protein expression in various childhood astrocytoma subtypes: Significance in tumor progression. Anticancer Res 17: 1187–1194, 1997.

    PubMed  CAS  Google Scholar 

  54. Biernat W, Kleihues P, Yonekawa Y, Ohgaki H: Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol 56: 180–185, 1997.

    PubMed  CAS  Google Scholar 

  55. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H: Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6: 217–223, 1996.

    PubMed  CAS  Google Scholar 

  56. Korkolopoulou P, Christodoulou P, Kouzelis K, Hadjiyannakis M, Priftis A, Stamoulis G, Seretis A, Thomas-Tsagli E: MDM2 and p53 expression in gliomas: a multivariate survival analysis including proliferation markers and epidermal growth factor receptor. Br J Cancer 75: 1269–1278, 1997.

    PubMed  CAS  Google Scholar 

  57. Hagel C, Laking G, Laas R, Scheil S, Jung R, Milde-Langosch K, Stavrou DK: Demonstration of p53 protein and TP53 gene mutations in oligodendrogliomas. Eur J Cancer 32A: 2242–2248, 1996.

    PubMed  CAS  Google Scholar 

  58. Packham G, Cleveland J: c-Myc and apoptosis. Biochim Biophys Acta 1242: 11–28, 1995.

    PubMed  Google Scholar 

  59. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH: Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852, 1993.

    PubMed  CAS  Google Scholar 

  60. Strasser A, Harris AW, Jacks T, Cory S: DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79: 329–339, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD: Expression of p53 related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol 32: 1157–1165, 2001.

    Article  PubMed  CAS  Google Scholar 

  62. Matsumoto T, Fujii T, Yabe M, Oka K, Hoshi T, Sato K: MIB-1 and p53 immunocytochemistry for differentiating pilocytic astrocytomas and astrocytomas from anaplastic astrocytomas and glioblastomas in children and young adults. Histopathology 33: 446–452, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Bodey B, Bodey B JR, Gröger AM, Luck JV, Siegel SE, Taylor CR, Kaiser HE: Immunocytochemical detection of the p170 multidrug resistance (MDR) and the p53 tumor suppressor gene proteins in human breast cancer cells: Clinical and therapeutical significance. Anticancer Res 17:1311–1318, 1997.

    PubMed  CAS  Google Scholar 

  64. Fuchs EJ, McKenna KA, Bedi A: p53-dependent DNA damage-induced apoptosis requires Fas-APO-1-independent activation of CPP321. Cancer Res 57: 2550–2554, 1997.

    PubMed  CAS  Google Scholar 

  65. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–91, 1996.

    Article  PubMed  CAS  Google Scholar 

  66. Naumowski L, Clearly ML: Bcl-2 inhibits apoptosis associated with terminal differentiation of HL-60 myeloid leukemia cells. Blood 83: 2261–2266, 1994.

    Google Scholar 

  67. Reed JC: Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7: 541–546, 1995.

    PubMed  CAS  Google Scholar 

  68. Haldar S, Basu A, Croce CM: Bcl-2 is the guardian of microtubule integrity. Cancer Res 57: 229–233, 1997.

    PubMed  CAS  Google Scholar 

  69. Oltvai Z, Milliman C, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog Bax that accelerates programmed cell death. Cell 74: 609–619, 1993.

    PubMed  CAS  Google Scholar 

  70. Pillai MR, Kesari AL, Chellam VG, Madhavan J, Nair P, Nair MK: Spontaneous programmed cell death in infiltrating duct carcinoma: association with p53, BCL-2, hormone receptors and tumor proliferation. Pathol Res Pract 194: 549–557, 1998.

    PubMed  CAS  Google Scholar 

  71. Yuan J, Horvitz HR: The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138: 33–41, 1990.

    Article  PubMed  CAS  Google Scholar 

  72. Hengartner MO, Ellis RE, Horvitz HR: Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499, 1992.

    Article  PubMed  CAS  Google Scholar 

  73. Steller H: Mechanisms and genes of cellular suicide. Science 267: 1445–1448, 1995.

    PubMed  CAS  Google Scholar 

  74. Reed JC: Bcl-2 and the regulation of programmed cell death. J Cell Biol 124: 1–6, 1994.

    Article  PubMed  CAS  Google Scholar 

  75. Pourzand C, Rossier G, Reelfs O, Borner C, Tyrrell RM: The overexpression of bcl-2 inhibits UVA-mediated immediate apoptosis in rat 6 fibroblasts: evidence for the involvement of bcl-2 as an antioxidant. Cancer Res 57: 1405–1411, 1997.

    PubMed  CAS  Google Scholar 

  76. Alnermi ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J: Human ICE/CED-3 protease nomenclature. Cell 87: 171, 1996.

    Google Scholar 

  77. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA: Induction of apoptosis by the mouse Nedd 2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1β-converting enzyme. Genes Dev 8: 1613–1626, 1994.

    PubMed  CAS  Google Scholar 

  78. Sinkovics JG: Malignant lymphoma arising from natural killer cells: report of the first case in 1970 and newer developments in the FasL FasR system. Acta Microbiol Immunol Hung 44: 295–303, 1997.

    PubMed  CAS  Google Scholar 

  79. Wang L, Miura M, Bergeron B, Zhu H, Yuan J: Ich-1, an ICE/Ced-3 related gene, encodes both positive and negative regulators of programmed cell death. Cell 78: 739–750, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P, Mankovich JA, Terranova M, Ghayur T: Identification and characterization of ICH-2, a novel member of the interleukin-1 beta-converting enzyme family of cysteine proteases. J Biol Chem 270: 15250–15256, 1995.

    PubMed  CAS  Google Scholar 

  81. Fernandes-Alnemri T, Litwack G, Alnemri ES: CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269: 30761–30764, 1995.

    Google Scholar 

  82. Fernandes-Alnemri T, Litwack G, Alnemri ES: Mch2, a new member of the apoptotic Ced-3/ICE cysteine protease gene family. Cancer Res 55: 2737–2742, 1995.

    PubMed  CAS  Google Scholar 

  83. Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW: Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII members of the ICE/Ced-3 family of cysteine proteases. J Biol Chem 270: 15870–15876, 1995.

    PubMed  CAS  Google Scholar 

  84. Duan H, Chinnaiyan AM, Hudson P, Wing JP, He WW, Dixit VM: ICE-LAP3, a novel mammalian homologue of of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 271: 1621–1625, 1996.

    Article  PubMed  CAS  Google Scholar 

  85. Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW, Dixit VM: ICE-LAP6, a novel member of the ICE-Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem 271: 16720–16724, 1996.

    Article  PubMed  CAS  Google Scholar 

  86. Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85: 803–815, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347, 1994.

    Article  PubMed  CAS  Google Scholar 

  88. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43, 1995.

    Article  PubMed  CAS  Google Scholar 

  89. Sorensen CM: Apoptosis or planning a death. Biomedical Products (September, 1996 issue), pp 38–39, 1996.

    Google Scholar 

  90. Asano K, Kubo O, Tajika Y, Huang MC, Takakura K, Ebina K, Suzuki S: Expression and role of cadherins in astrocytic tumors. Brain Tumor Pathol 14: 27–33, 1997.

    PubMed  CAS  Google Scholar 

  91. Huber O: Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci 60: 1872–1890, 2003.

    PubMed  CAS  Google Scholar 

  92. Strelkov SV, Herrmann H, Aebi U: Molecular architecture of intermediate filaments. Bioessays 25: 243–251, 2003.

    Article  PubMed  CAS  Google Scholar 

  93. Hasegawa K, Yoshida T, Matsumoto K, Katsuta K, Waga S, Sakakura T: Differential expression of tenascin-C and tenascin-X in human astrocytomas. Acta Neuropathol (Berl) 93: 431–437, 1997.

    CAS  Google Scholar 

  94. Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J: Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 57: 3272–3280, 1997.

    PubMed  CAS  Google Scholar 

  95. Aaronson SA: Growth factors and cancer. Science 254: 1146–1153; 1991.

    PubMed  CAS  Google Scholar 

  96. Engebraaten O, Bjerkvig R, Humphrey PA, Bigner SH, Bigner DD, Laerum OD: Effect of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer 53: 209–214, 1993.

    PubMed  CAS  Google Scholar 

  97. Chicoine MR, Madsen CL, Silbergeld DL: Modification of human glioma locomotion in vitro by cytokines EGF, bFGF, PDGFbb, NGF, and TNFa. Neurosurg 36: 1165–1171, 1995.

    CAS  Google Scholar 

  98. U HS, Espiritu OD, Kelley PY, Klauber MR, Hatton JD: The role of the epidermal growth factor receptor in human gliomas: I. The control of cell growth. J Neurosurg 82: 841–846, 1995.

    CAS  Google Scholar 

  99. Hitotsumatsu T, Iwaki T, Kitamoto T, Mizoguchi M, Suzuki SO, Hamada Y, Fukui M, Tateishi J: Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol 93: 225–232, 1997.

    Article  PubMed  CAS  Google Scholar 

  100. Chang F, Li R, Noon K, Gage D, Ladisch S: Human medulloblastoma gangliosides. Glycobiology 7: 523–530, 1997.

    PubMed  CAS  Google Scholar 

  101. Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST: Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93: 518–527, 1997.

    Article  PubMed  CAS  Google Scholar 

  102. Ingber DE: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91: 877–887, 2002.

    Article  PubMed  CAS  Google Scholar 

  103. Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MA: Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 144: 287–301, 1997.

    Article  PubMed  CAS  Google Scholar 

  104. Yoon Y, Pitts K, McNiven M: Studying cytoskeletal dynamics in living cells using green fluorescent protein. Mol Biotechnol 21: 241–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  105. Osborn M, Weber K: Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48: 372–394, 1983.

    PubMed  CAS  Google Scholar 

  106. Yung WK, Luna M, Borit A: Vimentin and glial fibrillary acidic protein in human brain tumors. J Neurooncol 3: 35–38, 1985.

    Article  PubMed  CAS  Google Scholar 

  107. Gown AM, Vogel AM: Anti-intermediate filament monoclonal antibodies: tissuespecific tools in tumor diagnosis. Surv Synth Pathol Res 3: 369–385, 1984.

    PubMed  CAS  Google Scholar 

  108. Cooper EH: Neuron specific enolase: a marker of (small cell) cancers of neuronal and neuroendocrine origin. Biomed Pharmacother 39: 165–166, 1985.

    PubMed  CAS  Google Scholar 

  109. Gould VE: Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol 17: 212–215, 1986.

    PubMed  CAS  Google Scholar 

  110. Messing A, Brenner M: GFAP: functional implications gleaned from studies of genetically engineered mice. Glia 43: 87–90, 2003.

    Article  PubMed  Google Scholar 

  111. Eng LF, Ghirnikar RS, Lee YL: Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25: 1439–1451, 2000.

    Article  PubMed  CAS  Google Scholar 

  112. Rungger-Brandle E, Achtstatter T, Franke WW: An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes. J Cell Biol 109: 705–716, 1989.

    Article  PubMed  CAS  Google Scholar 

  113. Cosgrove M, Fitzgibbons PL, Sherrod A, Chandrasoma PT, Martin SE: Intermediate filament expression in astrocytic neoplasms. Am J Surg Pathol 13: 141–145, 1989.

    PubMed  CAS  Google Scholar 

  114. Leader M, Collins M, Patel J, Henry K: Vimentin: an evaluation of its role as a tumour marker. Histopathology 11: 63–72, 1987.

    PubMed  CAS  Google Scholar 

  115. Gown AM, Vogel AM: Monoclonal antibodies to human intermediate filament proteins. III. Analysis of tumors. Am J Clin Pathol 84: 413–424, 1984.

    Google Scholar 

  116. Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L: Vimentin intermediate filaments are increased in human neoplastic astrocytes (abstract). J Neuropathol Exp Neurol 42: 309, 1983.

    Google Scholar 

  117. Wang E, Cairncross JG, Liem RK: Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells. Proc Natl Acad Sci USA 81: 2102–2106, 1984.

    PubMed  CAS  Google Scholar 

  118. Galloway PG, Roessmann U: Anaplastic astrocytoma mimicking metastatic carcinoma. Am J Surg Pathol 10: 728–732, 1986.

    PubMed  CAS  Google Scholar 

  119. Bodey B, Zeltzer PM, Saldivar V, Kemshead J: Immunophenotyping of childhood astrocytomas with a library of monoclonal antibodies. Int J Cancer 45: 1079–1087, 1990.

    PubMed  CAS  Google Scholar 

  120. Perentes E, Rubinstein LJ: Recent applications of immunoperoxidase histochemistry in human neuro-oncology. An update. Arch Pathol Lab Med 111: 796–812, 1987.

    PubMed  CAS  Google Scholar 

  121. Mork SJ, Rubinstein LJ, Kepes JJ, Perentes E, Uphoff DF: Patterns of epithelial metaplasia in malignant gliomas. II. Squamous differentiation of epithelial-like formations in gliosarcomas and glioblastomas. J Neuropathol Exp Neurol 47: 101–118, 1988.

    PubMed  CAS  Google Scholar 

  122. Franke WW, Weber K, Osborn M, Schmid E, Freudenstein C: Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res 116: 429–445, 1978.

    Article  PubMed  CAS  Google Scholar 

  123. Franke WW, Appelhans B, Schmid E, Freudenstein C, Osborn M, Weber K: Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin. Differentiation 15: 7–25, 1979.

    PubMed  CAS  Google Scholar 

  124. Steinert PM, Steven AC, Roop DR: The molecular biology of intermediate filaments. Cell 42: 411–420, 1985.

    Article  PubMed  CAS  Google Scholar 

  125. Steinert PM, Roop DR: Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 57: 593–625, 1988.

    Article  PubMed  CAS  Google Scholar 

  126. Kepes JJ, Fulling KH, Garcia JH: The clinical significance of “adenoid” formations of neoplastic astrocytes, imitating metastatic carcinoma, in gliosarcomas. A review of five cases. Clin Neuropathol 1: 139–150, 1982.

    PubMed  CAS  Google Scholar 

  127. Sun TT, Green H: Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem 253: 2053–2060, 1978.

    PubMed  CAS  Google Scholar 

  128. Green H, Fuchs E, Watt F: Differentiated structural components of the keratinocyte. Cold Spring Harb Symp Quant Biol 46: 293–301, 1982.

    PubMed  Google Scholar 

  129. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24, 1982.

    Article  PubMed  CAS  Google Scholar 

  130. Sun TT, Eichner R, Nelson WG, Tseng SC, Weiss RA, Jarvinen M, Woodcock-Mitchell J: Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol 8: 109s–115s, 1983.

    Google Scholar 

  131. Steinert PM, Steven AC: Splitting hairs and other intermediate filaments. Nature 316: 767, 1985.

    Article  PubMed  CAS  Google Scholar 

  132. Fuchs E, Green H: Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19: 1033–1042, 1980.

    Article  PubMed  CAS  Google Scholar 

  133. Tseng SC, Jarvinen MJ, Nelson WG, Huang JW, Woodcock-Mitchell J, Sun TT: Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell 30: 361–372, 1982.

    Article  PubMed  CAS  Google Scholar 

  134. Moll R, von Bassewitz DB, Schulz U, Franke WW: An unusual type of cytokeratin filament in cells of a human cloacogenic carcinoma derived from the anorectal transition zone. Differentiation 22: 25–40, 1982.

    PubMed  CAS  Google Scholar 

  135. Moll R, Krepler R, Franke WW: Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation 23: 256–269, 1983.

    PubMed  CAS  Google Scholar 

  136. Weiss SW, Langloss JM, Enzinger FM: Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest 49: 299–308, 1983.

    PubMed  CAS  Google Scholar 

  137. Debus E, Weber K, Osborn M: Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 25: 193–203, 1983.

    PubMed  CAS  Google Scholar 

  138. Woodcock-Mitchell J, Eichner R, Nelson WG, Sun TT: Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol 95: 580–588, 1982.

    Article  PubMed  CAS  Google Scholar 

  139. Damjanov I: Antibodies to intermediate filaments and histogenesis. Lab Invest 47: 215–217, 1982.

    PubMed  CAS  Google Scholar 

  140. Trojanowski JQ, Lee VM, Schlaepfer WW: An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol 15: 248–257, 1984.

    PubMed  CAS  Google Scholar 

  141. Sun TT, Shih C, Green H: Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci USA 76: 2813–2817, 1979.

    PubMed  CAS  Google Scholar 

  142. Zipser B, Schley C: Description of two differently distributed central nervous system antigens with single monoclonal antibody and different methods of fixation. Ann NY Acad Sci 420: 100–106, 1983.

    PubMed  CAS  Google Scholar 

  143. Gabbiani G, Kapanci Y, Barazzone P, Franke WW: Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist. Am J Pathol 104: 206–216, 1981.

    PubMed  CAS  Google Scholar 

  144. Vinores SA, Rubinstein LJ: Simultaneous expression of glial fibrillary acidic (GFA) protein and neuron-specific enolase (NSE) by the same reactive or neoplastic astrocytes. Neuropathol Appl Neurobiol 11: 349–359, 1985.

    PubMed  CAS  Google Scholar 

  145. Lazarides E: Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51: 219–250, 1982.

    Article  PubMed  CAS  Google Scholar 

  146. Kemshead JT, Coakham HB: The use of monoclonal antibodies for the diagnosis of intracranial malignancies and the small round cell tumours of childhood. J Pathol 141: 249–257, 1983.

    Article  PubMed  CAS  Google Scholar 

  147. Kemshead JT: Pediatric Tumors: Immunological and Molecular Markers. Boca Roton, FL, CRC Press, 1989.

    Google Scholar 

  148. Molenaar WM, Jansson DS, Gould VE, Rorke LB, Franke WW, Lee VM, Packer RJ, Trojanowski JQ: Molecular markers of primitive neuroectodermal tumors and other pediatric central nervous system tumors. Monoclonal antibodies to neuronal and glial antigens distinguish subsets of primitive neuroectodermal tumors. Lab Invest 61: 635–643, 1989.

    PubMed  CAS  Google Scholar 

  149. Gould VE, Jansson DS, Molenaar WM, Rorke LB, Trojanowski JQ, Lee VM, Packer RJ, Franke WW: Primitive neuroectodermal tumors of the central nervous system. Patterns of expression of neuroendocrine markers, and all classes of intermediate filament proteins. Lab Invest 62: 498–509, 1990.

    PubMed  CAS  Google Scholar 

  150. Dahl D, Bignami A: Astroglial and axonal proteins in isolated brain filaments. I. Isolation of the glial fibrillary acidic protein and of an immunologically active cyanogen bromide peptide from brain filament preparations of bovine white matter. Biochim Biophys Acta 578: 305–316, 1979.

    PubMed  CAS  Google Scholar 

  151. Sawa H, Takeshita I, Kuramitsu M, Fukui M, Inomata H: Immunohistochemistry of retinoblastomas. J Neurooncol 5: 351–355, 1987.

    Article  PubMed  CAS  Google Scholar 

  152. Dahl D: Isolation of neurofilament proteins and of immunologically active neurofilament degradation products from extracts of brain, spinal cord and sciatic nerve. Biochim Biophys Acta 668: 299–306, 1981.

    PubMed  CAS  Google Scholar 

  153. Wang N, Stamenovic D: Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23: 535–540, 2002.

    Article  PubMed  Google Scholar 

  154. Helfand BT, Chang L, Goldman RD: The dynamic and motile properties of intermediate filaments. Annu Rev Cell Dev Biol 19: 445–467, 2003.

    Article  PubMed  CAS  Google Scholar 

  155. Bürglin TR: Homeodomain Proteins. In: Encyclopedia of Molecular Biology and Molecular Medicine (Meyers RA, ed). Vol 3. Weinheim, VCH Verlagsgesellschaft mbH, p1996, pp 55–76.

    Google Scholar 

  156. Stornaiuolo A, Acampora D, Pannese M, D’Esposito M, Morelli F, Migliaccio E, Rambaldi M, Faiella A, Nigro V, Simeone A, Boncinelli E: Human HOX genes are differentially activated by retinoic acid in embryonal carcinoma cells according to their position within the four loci. Cell Differ Dev 31: 119–127, 1990.

    PubMed  CAS  Google Scholar 

  157. Giampaolo A, Acampora D, Zappavigna V, Pannese M, D’Esposito M, Care A, Faiella A, Stornaiuolo A, Russo G, Simeone A, Boncinelli E, Peschle C: Differential expression of human HOX-2 genes along the anterior-posterior axis in embryonic central nervous system. Differentiation 40: 191–197, 1989.

    PubMed  CAS  Google Scholar 

  158. Mavilio F, Simeone A, Boncinelli E, Andrews PW: Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation 37: 73–79, 1988.

    PubMed  CAS  Google Scholar 

  159. Simeone A, Acampora D, D’Esposito M, Faiella A, Pannese M, Scotto L, Montanucci M, D’Alessandro G, Mavilio F, Boncinelli E: Posttranscriptional control of human homeobox gene expression in induced NTERA-2 embryonal carcinoma cells. Mol Reprod Dev 1: 107–115, 1989.

    Article  PubMed  CAS  Google Scholar 

  160. Peverali FA, D’Esposito M, Acampora D, Bunone G, Negri M, Faiella A, Stornaiuolo A, Pannese M, Migliaccio E, Simeone A, Della Valle G, Boncinelli E: Expression of HOX homeogenes in human neuroblastoma cell culture lines. Differentiation 45: 61–69, 1990.

    PubMed  CAS  Google Scholar 

  161. Maconochie MK, Nonchev S, Studer M, Chan SK, Popperl H, Sham MH, Mann RS, Krumlauf R: Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11: 1885–1895, 1997.

    PubMed  CAS  Google Scholar 

  162. Gould A, Morrison A, Sproat G, White RA, Krumlauf R: Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11: 900–913, 1997.

    PubMed  CAS  Google Scholar 

  163. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK: Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9: 1753–1765, 1995.

    PubMed  CAS  Google Scholar 

  164. Rancourt DE, Tsuzuki T, Capecchi MR: Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 9: 108–122, 1995.

    PubMed  CAS  Google Scholar 

  165. Sun J, Rose JB, Bird P: Gene structure, chromosomal localization, and expression of the murine homologue of human proteinase inhibitor 6 (PI-6) suggests divergence of PI-6 from the ovalbumin serpins. J Biol Chem 270: 16089–16096, 1995.

    PubMed  CAS  Google Scholar 

  166. Hogan BL, Holland PW, Lumsden A: Expression of the homeobox gene, Hox 2.1, during mouse embryogenesis. Cell Diff Dev 25: 39–44, 1988.

    Article  Google Scholar 

  167. Safaei R: A target of the HoxB5 gene from the mouse nervous system. Brain Res Dev Brain Res 100: 5–12, 1997.

    PubMed  CAS  Google Scholar 

  168. Lawrence HJ, Sauvageau G, Humphries RK, Largman C: The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14: 281–291, 1996.

    PubMed  CAS  Google Scholar 

  169. Thorsteinsdottir U, Sauvageau G, Humphries RK: Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol Oncol Clin North Am 11: 1221–1237, 1997.

    Article  PubMed  CAS  Google Scholar 

  170. Shimamoto T, Ohyashiki K, Toyama K, Takeshita K: Homeobox genes in hematopoiesis and leukemogenesis. Int J Hematol 67: 339–350, 1998.

    PubMed  CAS  Google Scholar 

  171. Chiba S: Homeobox genes in normal hematopoiesis and leukemogenesis. Int J Hematol 68: 343–353, 1998.

    PubMed  CAS  Google Scholar 

  172. Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM: Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol 15: 5434–5443, 1995.

    PubMed  CAS  Google Scholar 

  173. Nakamura T, Largaespada DA, Shaughnessy JD Jr, Jenkins NA, Copeland NG: Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 12:149–153, 1996.

    PubMed  CAS  Google Scholar 

  174. Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M, Humphries K, Largman C: Stage-and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. Exp Hematol 23: 1160–1166, 1995.

    PubMed  CAS  Google Scholar 

  175. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE: Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 13: 687–698, 1999.

    PubMed  CAS  Google Scholar 

  176. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G: Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17: 3714–3725, 1998.

    Article  PubMed  CAS  Google Scholar 

  177. Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK: Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 17: 495–505, 1997.

    PubMed  CAS  Google Scholar 

  178. Ohnishi K, Tobita T, Sinjo K, Takeshita A, Ohno R: Modulation of homeobox B6 and B9 genes expression in human leukemia cell lines during myelomonocytic differentiation. Leuk Lymphoma 31: 599–608, 1998.

    PubMed  CAS  Google Scholar 

  179. Cillo C, Cantile M, Mortarini R, Barba P, Parmiani G, Anichini A: Differential patterns of HOX gene expression are associated with specific integrin and ICAM profiles in clonal populations isolated from a single human melanoma metastasis. Int J Cancer 66: 692–697, 1996.

    Article  PubMed  CAS  Google Scholar 

  180. Lawrence HJ, Stage KM, Mathews CH, Detmer K, Scibienski R, MacKenzie M, Migliaccio E, Boncinelli E, Largman C: Expression of HOX C homeobox genes in lymphoid cells. Cell Growth Differ 4: 665–669, 1993.

    PubMed  CAS  Google Scholar 

  181. Bijl JJ, van Oostveen JW, Walboomers JM, Brink AT, Vos W, Ossenkoppele GJ, Meijer CJ: Differentiation and cell-type-restricted expression of HOXC4, HOXC5 and HOXC6 in myeloid leukemias and normal myeloid cells. Leukemia 12: 1724–1732, 1998.

    Article  PubMed  CAS  Google Scholar 

  182. Meazza R, Faiella A, Corsetti MT, Airoldi I, Ferrini S, Boncinelli E, Corte G: Expression of HOXC4 homeoprotein in the nucleus of activated human lymphocytes. Blood 85: 2084–90, 1995.

    PubMed  CAS  Google Scholar 

  183. Bijl J, van Oostveen JW, Kreike M, Rieger E, van der Raaij-Helmer LM, Walboomers JM, Corte G, Boncinelli E, van den Brule AJ, Meijer CJ: Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 87: 1737–1745, 1996.

    PubMed  CAS  Google Scholar 

  184. Bijl JJ, van Oostveen JW, Walboomers JM, Horstman A, van den Brule AJ, Willemze R, Meijer CJ: HOXC4, HOXC5, and HOXC6 expression in non-Hodgkin’s lymphoma: preferential expression of the HOXC5 gene in primary cutaneous anaplastic T-cell and oro-gastrointestinal tract mucosa-associated B-cell lymphomas. Blood 90: 4116–4125, 1997.

    PubMed  CAS  Google Scholar 

  185. Bijl JJ, Rieger E, van Oostveen JW, Walboomers JM, Kreike M, Willemze R, Meijer CJ: HOXC4, HOXC5, and HOXC6 expression in primary cutaneous lymphoid lesions. High expression of HOXC5 in anaplastic large-cell lymphomas. Am J Pathol 151: 1067–1074, 1997.

    PubMed  CAS  Google Scholar 

  186. Alami Y, Castronovo V, Belotti D, Flagiello D, Clausse N: HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes. Biochem Biophys Res Commun 257: 738–745, 1999.

    Article  PubMed  CAS  Google Scholar 

  187. Shim C, Zhang W, Rhee CH, Lee JH: Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res 4: 3045–3050, 1998.

    PubMed  CAS  Google Scholar 

  188. Osborne J, Hu C, Hawley C, Underwood LJ, O’Brien TJ, Baker VV: Expression of HOXD10 gene in normal endometrium and endometrial adenocarcinoma. J Soc Gynecol Investig 5: 277–280, 1998.

    PubMed  CAS  Google Scholar 

  189. Boylan JF, Lohnes D, Taneja R, Chambon P, Gudas LJ: Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc Natl Acad Sci USA 90: 9601–9605, 1993.

    PubMed  CAS  Google Scholar 

  190. Pratt MA, Langston AW, Gudas LJ, McBurney MW: Retinoic acid fails to induce expression of Hox genes in differentiation-defective murine embryonal carcinoma cells carrying a mutant gene for retinoic acid receptor. Differentiation 53: 105–113, 1993.

    PubMed  CAS  Google Scholar 

  191. Langston AW, Gudas LJ: Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev 4: 550–555, 1994.

    Article  PubMed  CAS  Google Scholar 

  192. Knoepfler PS, Kamps MP: The Pbx family of proteins is strongly upregulated by a post-transcriptional mechanism during retinoic acid-induced differentiation of P19 embryonal carcinoma cells. Mech Dev 63: 5–14, 1997.

    Article  PubMed  CAS  Google Scholar 

  193. Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F: Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766, 1990.

    Article  PubMed  CAS  Google Scholar 

  194. Chang CP, de Vivo I, Cleary ML: The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol 17: 81–88, 1997.

    PubMed  CAS  Google Scholar 

  195. Krosl J, Baban S, Krosl G, Rozenfeld S, Largman C, Sauvageau G: Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 16: 3403–3412, 1998.

    Article  PubMed  CAS  Google Scholar 

  196. Tiberio C, Barba P, Magli MC, Arvelo F, Le Chevalier T, Poupon MF, Cillo C: HOX gene expression in human small-cell lung cancers xenografted into nude mice. Int J Cancer 58: 608–615, 1994.

    PubMed  CAS  Google Scholar 

  197. Flagiello D, Gibaud A, Dutrillaux B, Poupon MF, Malfoy B: Distinct patterns of alltrans retinoic acid dependent expression of HOXB and HOXC homeogenes in human embryonal and small-cell lung carcinoma cell lines. FEBS Lett 415: 263–267, 1997.

    Article  PubMed  CAS  Google Scholar 

  198. Flagiello D, Poupon MF, Cillo C, Dutrillaux B, Malfoy B: Relationship between DNA methylation and gene expression of the HOXB gene cluster in small cell lung cancers. FEBS Lett 380: 103–107, 1996.

    Article  PubMed  CAS  Google Scholar 

  199. Chariot A, Moreau L, Senterre G, Sobel ME, Castronovo V: Retinoic acid induces three newly cloned HOXA1 transcripts in MCF7 breast cancer cells. Biochem Biophys Res Commun 215: 713–720, 1995.

    Article  PubMed  CAS  Google Scholar 

  200. Chariot A, Castronovo V: Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun 222: 292–297, 1996.

    Article  PubMed  CAS  Google Scholar 

  201. Suzuki M, Tanaka M, Iwase T, Naito Y, Sugimura H, Kino I: Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors. Biochem Biophys Res Commun 194: 187–193, 1993.

    PubMed  CAS  Google Scholar 

  202. De Vita G, Barba P, Odartchenko N, Givel JC, Freschi G, Bucciarelli G, Magli MC, Boncinelli E, Cillo C: Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer 29A: 887–893, 1993.

    PubMed  Google Scholar 

  203. Manohar CF, Furtado MR, Salwen HR, Cohn SL: Hox gene expression in differentiating human neuroblastoma cells. Biochem Mol Biol Int 30: 733–741, 1993.

    PubMed  CAS  Google Scholar 

  204. Manohar CF, Salwen HR, Furtado MR, Cohn SL: Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 17: 34–47, 1996.

    PubMed  CAS  Google Scholar 

  205. Cillo C, Barba P, Freschi G, Bucciarelli G, Magli MC, Boncinelli E: HOX gene expression in normal and neoplastic human kidney. Int J Cancer 51: 892–897, 1992.

    PubMed  CAS  Google Scholar 

  206. Deschamps J, Meijlink F: Mammalian homeobox genes in normal development and neoplasia. Crit Rev Oncog 3: 117–173, 1992.

    PubMed  CAS  Google Scholar 

  207. Friedmann Y, Daniel CA, Strickland P, Daniel CW: Hox genes in normal and neoplastic mouse mammary gland. Cancer Res 54: 5981–5985, 1994.

    PubMed  CAS  Google Scholar 

  208. Redline RW, Hudock P, MacFee M, Patterson P: Expression of AbdB-type homeobox genes in human tumors. Lab Invest 71: 663–670, 1994.

    PubMed  CAS  Google Scholar 

  209. Cillo C: HOX genes in human cancers. Invasion Metastasis 14: 38–49, 1994–-95.

    PubMed  CAS  Google Scholar 

  210. Stuart ET, Yokota Y, Gruss P: PAX and HOX in neoplasia. Adv Genet 33: 255–274, 1995.

    PubMed  CAS  Google Scholar 

  211. Mark M, Rijli FM, Chambon P: Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 42: 421–429, 1997.

    PubMed  CAS  Google Scholar 

  212. Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA: Induction of the angiogenic phenotype by Hox D3. J Cell Biol 139: 257–264, 1997.

    Article  PubMed  CAS  Google Scholar 

  213. Care A, Silvani A, Meccia E, Mattia G, Stoppacciaro A, Parmiani G, Peschle C, Colombo MP: HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol 16: 4842–4851, 1996.

    PubMed  CAS  Google Scholar 

  214. Kloen P, Visker MH, Olijve W, van Zoelen EJ, Boersma CJ: Cell-type-specific modulation of Hox gene expression by members of the TGF-beta superfamily: a comparison between human osteosarcoma and neuroblastoma cell lines. Biochem Biophys Res Commun 233: 365–369, 1997.

    Article  PubMed  CAS  Google Scholar 

  215. Silverberg E, Boring CC, Squires TS: Cancer statistics, CA-A Cancer J Clinicians 40: 9–26, 1990.

    CAS  Google Scholar 

  216. Cooper GM (ed), Elements of human cancer. Jones & Bartlett Publishers, Boston-London, 1992, pp.7–14.

    Google Scholar 

  217. Katsetos CD, Krishna L, Frankfurter A, Karkavelas G, Wolfe DE, Valsamis MP, Schiffer D, Vlachos IN, Urich H: A cytomorphological scheme of differentiating neuronal phenotypes in cerebellar medulloblastomas based on immunolocalization of class III β-tubulin isotype (β III) and proliferating cell nuclear antigen (PCNA)/cyclin. Clinical Neuropathol 14: 72–81, 1995.

    CAS  Google Scholar 

  218. O’Brien MC, Gupta RK, Lee SY, Bolton WE: Use of a multiparametric panel to target subpopulations in a heterogeneous solid tumor model for improved analytical accuracy. Cytometry 21: 76–83, 1995.

    PubMed  CAS  Google Scholar 

  219. Oda Y, Tsuneyoshi M: A comparative study of nuclear photometry and proliferating activity in neuroectodermal tumors of bone and Ewing’s sarcoma of bone. General & Diagnostic Pathol 141: 121–129, 1995.

    CAS  Google Scholar 

  220. Ellis PA, Makris A, Burton SA, Titley J, Ormerod MG, Salter J, Powles TJ, Smith IE, Dowsett M: Comparison of MIB-1 proliferation index with S-phase fraction in human breast carcinomas. Brit J Cancer 73: 640–643, 1996.

    PubMed  CAS  Google Scholar 

  221. Oyama T, Take H, Hikino T, Iino Y, Nakajima T: Immunohistochemical expression of metallothionein in invasive breast cancer in relation to proliferative activity, histology and prognosis. Oncol 53: 112–117, 1996.

    CAS  Google Scholar 

  222. Enzinger FM, Lattes R, Torloni H: Histological typing of soft tissue tumours. World Health Organization, Geneva, 1971, p. 28.

    Google Scholar 

  223. Kury G, Carter HW: Autoradiographic study of human nervous system tumors. Arch Pathol 80: 38–42, 1965.

    Google Scholar 

  224. Tym R: Distribution of cell doubling times in in vivo human cerebral tumors. Surg Forum 20: 445–447, 1969.

    PubMed  CAS  Google Scholar 

  225. Hoshino T, Barker M, Wilson CB, Boldrey EB, Fewer D: Cell kinetics of human gliomas. J Neurosurg 37: 15–26, 1975.

    Google Scholar 

  226. Hoshino T, Wilson CB, Rosenblum ML, Barker M: Chemotherapeutic implications of growth fraction and cell cycle time in glioblastomas. J Neurosurg 43: 127–135, 1975.

    PubMed  CAS  Google Scholar 

  227. Böker DK, Stark HJ, Gullotta F, Nadstawek J, Schultheiss R: Immunohistochemical demonstration of the Ki-67-antigen in paraffin-embedded tumor biopsies. Clin Neuropathol 9: 51–54, 1990.

    PubMed  Google Scholar 

  228. Gerdes J: Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol 1(3): 199–206, 1990.

    PubMed  CAS  Google Scholar 

  229. Sledge GW, Eble JN, Roth BJ, Wuhrman BP, Fineberg N, Einhorn LH: Relation of proliferate activity to survival in patients with advanced germ cell cancer. Cancer Res 48: 3864–3868, 1988.

    PubMed  Google Scholar 

  230. Hall PA, Levison DA, Woods AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillet CE, Camplejohn R, Dover R: Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an insex of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162: 285–294, 1990.

    Article  PubMed  CAS  Google Scholar 

  231. Munck-Wikland E, Fernberg JO, Kuylenstierna R, Lindholm J, Aver G: Proliferating cell nuclear antigen (PCNA) expression and nuclear DNA content in predicting recurrence after radiotherapy of glottic cancer. Oral Oncol Eur J Cancer 2913: 75–79, 1993.

    Google Scholar 

  232. Broich G, Lavezzi A-M, Biondo B, Pignataro LD: PCNA — a cell proliferation marker in vocal cord cancer. Part II: recurrence in malignant laryngeal lesions. In Vivo 10: 175–178, 1996.

    PubMed  CAS  Google Scholar 

  233. Visakorpi T: Proliferative activity determined by DNA flow cytometry and proliferate cell nuclear antigen (PCNA) immunohistochemistry as a prognostic factor in prostatic carcinoma. J Pathol 168: 7–13, 1992.

    Article  PubMed  CAS  Google Scholar 

  234. Pignataro LD, Broich G, Lavezzi AM, Biondo B, Ottaviani F: PCNA — a cell proliferation marker in vocal cord cancer. Part I: Premalignant laryngeal lesions. Anticancer Res 15: 1517–1520, 1995.

    PubMed  CAS  Google Scholar 

  235. Fairman MP: DNA polymerase/PCNA: Actions and interactions. J Cell Science 95: 1–4, 1990.

    PubMed  CAS  Google Scholar 

  236. Bravo R, Franke Blundell PA, MacDonald M, Bravo M: Cyclin/PCNA is the auxiliary protein of the DNA polymerase delta. Nature 326: 517–518, 1987.

    Article  Google Scholar 

  237. Cruz-Sanchez FF, Ferreres JC, Figols J, Palacin A, Cardesa A, Rossi ML, Val-Bernal JF: Prognostic analysis of astrocytic gliomas correlating histological parameters with the proliferating cell nuclear antigen labeling index (PCNA-LI). Histol Histopathol 12: 43–49, 1997.

    PubMed  CAS  Google Scholar 

  238. Bodey B: The significance of immunocytochemistry in the diagnosis and therapy of neoplasms. Expert Opinion Biological Therapy 2: 371–393, 2002.

    CAS  Google Scholar 

  239. Nurse P: Universal control mechanism regulating onset of M-phase. Nature 344: 503–508, 1990.

    Article  PubMed  CAS  Google Scholar 

  240. Pardee A: G1 events and regulation of cell proliferation. Science 246: 603–608, 1989.

    PubMed  CAS  Google Scholar 

  241. Vulliet PR, Hall FL, Mitchell JP, Hardie DG: Identification of a novel proline-directed serine/threonine protein kinase in rat pheochromocytoma. J Biol Chem 264: 16292–16298, 1989.

    PubMed  CAS  Google Scholar 

  242. Hall FL, Vulliet PR: Proline-directed protein phosphorylation and cell cycle regulation. Current Opinion Cell Biol 3: 176–184, 1991.

    PubMed  CAS  Google Scholar 

  243. Howard A, Pelc SR: Nuclear incorporation of 32P as demonstrated by autoradiographs. Expl Cell Res 2: 178–187, 1951.

    CAS  Google Scholar 

  244. Darzynkiewicz Z: Molecular interactions and cellular changes during the cell cycle. Pharmacol Ther 21: 143–188, 1983.

    Article  PubMed  CAS  Google Scholar 

  245. Quastler H, Sherman FG: Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res 17: 420–438, 1959.

    Article  PubMed  CAS  Google Scholar 

  246. Miyachi K, Fritzler MJ, Tan EM: Autoantibody to a nuclear antigen in proliferating cells. J Immunol 121: 2228–2234, 1978.

    PubMed  CAS  Google Scholar 

  247. Tan EM: Autoantibodies to nuclear antigens (ANA): their immunobiology and medicine. Adv Immunol 33: 167–240, 1982.

    PubMed  CAS  Google Scholar 

  248. Gerdes J, Lemke H, Baisch H, Wacker H, Schwab U, Stein H: Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715, 1984.

    PubMed  CAS  Google Scholar 

  249. Hoshino T, Wilson CB: Cell kinetic analyses of human malignant brain tumours (gliomas). Cancer 44: 956–962, 1979.

    PubMed  CAS  Google Scholar 

  250. Kirkpatrick JP, Marks LB: Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int J Radiat Oncol Biol Phys 58(2): 641–654, 2004.

    Article  PubMed  Google Scholar 

  251. Knobler RL, Lublin FD, Streletz LJ, Zimmer M, Joseph J, D’Imperio C, Northrup B, Barolat G, Marcus SG: Intracerebral beta-interferon in brain tumor therapy. Monitoring cerebral function with compressed spectral analysis. Ann NY Acad Sci 540: 573–575, 1988.

    PubMed  CAS  Google Scholar 

  252. Hoshino T, Townsend JJ, Muraoka I, Wilson CB: An autoradiographic study of human gliomas: growth kinetics of anaplastic astrocytoma and glioblastoma multiforme. Brain 103: 967–984, 1980.

    PubMed  CAS  Google Scholar 

  253. Crafts DC, Hoshino T, Wilson CB: Current status of population kinetics in gliomas. Bull Cancer. 64: 115–124, 1977.

    PubMed  CAS  Google Scholar 

  254. Gerdes J: An immunohistological method for estimating cell growth fractions in rapid histopathological diagnosis during surgery. Int J Cancer 35: 169–171, 1985.

    PubMed  CAS  Google Scholar 

  255. Gerdes J, Lemke H, Baisch H, Wacker H, Schwab U, Stein H: Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715, 1984.

    PubMed  CAS  Google Scholar 

  256. Gerdes J, Schwab U, Lemke H, Stein H: Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31: 13–20, 1983.

    PubMed  CAS  Google Scholar 

  257. Burger PC, Shibata T, Kleihues P: The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical pathology. Am J Surg Pathol 10: 611–617, 1986.

    PubMed  CAS  Google Scholar 

  258. Ostertag CB, Volk B, Shibata T, Burger P, Kleihues P: The monoclonal antibody Ki-67 as a marker for proliferating cells in sterotactic biopsies of brain tumours. Acta Neurochirurg (Wien) 89: 117–121, 1987.

    CAS  Google Scholar 

  259. Giangaspero F, Doglioni C, Rivano MT, Pileri S, Gerdes J, Stein H: Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol (Berlin) 74: 179–182, 1987.

    Article  CAS  Google Scholar 

  260. Zuber P, Hamou MF, De Tribolet N: Identification of proliferating cells in human gliomas using the monoclonal antibody Ki-67. Neurosurgery 22: 364–368, 1988.

    PubMed  CAS  Google Scholar 

  261. Roggendorf W, Schuster T, Peiffer J: Proliferative potential of meningiomas determined with the monoclonal antibody Ki-67. Acta Neuropathol (Berlin) 73: 361–364, 1987.

    Article  CAS  Google Scholar 

  262. Pileri S, Gerdes J, Rivano M, Tazzari PL, Magnani M, Gobbi M, Stein H: Immunohistochemical determination of growth fractions in human permanent cell lines and lymphoid tumors: a critical comparison of the monoclonal antibodies OKT9 and Ki-67. Brit J Haematol 65: 271–276, 1987.

    CAS  Google Scholar 

  263. Lloyd RV, Wilson BS, Varani J, Gaur PK, Moline S, Makari JG: Immunocytochemical characterization of a monoclonal antibody that recognizes mitosing cells. Amer J Pathol 121: 275–283, 1985.

    CAS  Google Scholar 

  264. Klein G, Steiner M, Wiener F, Klein E: Human leukemia-associated anti-nuclear reactivity. Proc Natl Acad Sci USA 71: 685–689, 1974.

    PubMed  CAS  Google Scholar 

  265. Boker DK, Stark HJ: The proliferation rate of intracranial tumors as defined by the monoclonal antibody KI 67. Application of the method to paraffin embedded specimens. Neurosurg Rev 11: 267–272, 1988.

    PubMed  CAS  Google Scholar 

  266. Murry AW, Kirschner M: Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280, 1989.

    Google Scholar 

  267. Hall FL, Braun RK, Mihara K, Fung YK, Berndt N, Carbonaro-Hall DA, Vulliet PR: Characterization of the cytoplasmic proline-directed protein kinase in proliferative cells and tissues as a heterodimer comprised of p34cdc2 and p58cyclin A. J Biol Chem 266: 17430–17440, 1991.

    PubMed  CAS  Google Scholar 

  268. Doi T, Morita T, Wakabayashi N, Sumi T, Iwai SA, Amekawa S, Sakuda M, Nishimune Y: Induction of instability of p34(cdc2) expression by treatment with cisplatin (CDDP) in mouse teratocarcinoma F9 cells. Cancer Lett 176: 75–80, 2002.

    Article  PubMed  CAS  Google Scholar 

  269. Poggioli GJ, Dermody TS, Tyler KL: Reovirus-induced sigma1s-dependent G2/M phase cell cycle arrest is associated with inhibition of p34(cdc2). J Virol 75: 7429–7434, 2001.

    Article  PubMed  CAS  Google Scholar 

  270. Kanatsu-Shinohara M, Schultz RM, Kopf GS: Acquisition of meiotic competence in mouse oocytes: absolute amounts of p34(cdc2), cyclin B1, cdc25C, and wee1 in meiotically incompetent and competent oocytes. Biol Reprod 63: 1610–1616, 2000.

    Article  PubMed  CAS  Google Scholar 

  271. John S, Workman JL: Bookmarking genes for activation in condensed mitotic chromosomes. Bioessays 20: 275–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  272. Gatter KC, Alcock C, Heryet A, Mason DY: Clinical importance of analysing malignant tumours of uncertain origin with immunohistological techniques. Lancet 1: 1302–1305, 1985.

    PubMed  CAS  Google Scholar 

  273. Morimura T, Kitz K, Budka H: In situ analysis of cell kinetics in human brain tumours. Acta Neuropathol 77: 276–282, 1989.

    Article  PubMed  CAS  Google Scholar 

  274. Robbins BA, de la Vega D, Ogata K, Tan EM, Nakamura RM: Immunohistochemical detection proliferating cell nuclear antigen in solid human malignancies. Arch Pathol Lab Med 111: 841–845, 1987.

    PubMed  CAS  Google Scholar 

  275. Hoshino T: A commentary on the biology and growth kinetics of low-grade and high-grade gliomas. J Neurosurg 61: 895–900, 1984.

    PubMed  CAS  Google Scholar 

  276. Schlote W, Lang C, Mobius HJ: Growth fraction and growth pattern of neuroectodermal tumors as determined with the monoclonal antibody Ki-67. Abstract, Clin Neuropathol 7: 207, 1988.

    Google Scholar 

  277. Deckert M, Reifenberger G, Wechsler W: Determination of the proliferative potential of human brain tumors using the monoclonal antibody Ki-67. J Cancer Res Clin Oncol 115: 179–188, 1989.

    Article  PubMed  CAS  Google Scholar 

  278. Detta A, Hitchcock E: Rapid estimation of the proliferating index of brain tumours. J Neuro-Oncol 8: 245–253, 1990.

    Article  CAS  Google Scholar 

  279. Ohno S, Nishi T, Kojima Y, Haraoka J, Ito H, Mizuguchi J: Combined stimulation with interferon and retinoic acid synergistically inhibits proliferation of the glioblastoma cell line GB12. Neurol Res 24: 697–704, 2002.

    Article  PubMed  CAS  Google Scholar 

  280. Wilson CB, Hoshino T, Barker M, Downey R: Kinetics of gliomas in rat and man. Prog Exp Tumor Res 17: 363–372, 1972.

    PubMed  CAS  Google Scholar 

  281. Zatterstrom UK, Kallen A, Wennerberg J: Cell cycle time, growth fraction and cell loss in xenografted head and neck cancer. In Vivo 5: 137–142, 1991.

    PubMed  CAS  Google Scholar 

  282. Stahli C, Staehelin T, Miggiano V, Schmidt J, Haring P: High frequencies of antigen-specific hybridomas: dependence on immunization parameters and prediction by spleen cell analysis. J Immunol Methods 32: 297–304, 1980.

    Article  PubMed  CAS  Google Scholar 

  283. Nishizaki T, Orita T, Saiki M, Furutani Y, Aoki H: Cell kinetics studies of human brain tumours by in vitro labelling using anti-BUdR monoclonal antibody. J Neurosurg 69: 371–374, 1988.

    PubMed  CAS  Google Scholar 

  284. Hoshino T, Nagashima T, Cho KG, Murovic JA, Hodes JE, Wilson CB, Edwards MS, Pitis LH: S-phase fraction of human brain tumors in situ measured by uptake of bromodeoxyuridine. Int J Cancer 38: 369–374, 1986.

    PubMed  CAS  Google Scholar 

  285. Murovic JA, Nagashima T, Hoshino T, Edwards MS, Davis RL: Pediatric central nervous system tumors: a cell kinetic study with bromodeoxyuridine. Neurosurgery 19: 900–904, 1986.

    PubMed  CAS  Google Scholar 

  286. Silverman CL, Simpson JR: Cerebellar medulloblastoma: the importance of posterior fossa dose to survival and patterns of failure. Int J Radiat Oncol Biol Phys 8: 1869–1876, 1982.

    PubMed  CAS  Google Scholar 

  287. Goz B: The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells. Pharmacol Rev 29: 249–272, 1977.

    PubMed  CAS  Google Scholar 

  288. Gratzner HG: Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218: 474–475, 1982.

    PubMed  CAS  Google Scholar 

  289. Sacchi S, Donelli A, Cocconcelli P, Emilia G, Messerotti A, Piccinini L, Selleri L, Torelli G, Rinaldi G, Torelli U: Monoclonal antibody to 5-bromodeoxyuridine: a sensitive and rapid method for estimating the amount of S-phase cells. In: Biotechnology in Diagnostics (eds. by Koprowsky H, Ferrone S, Albertini A,), pp. 65–70, Elsevier Science Publishers, Amsterdam, 1985.

    Google Scholar 

  290. Assietti R, Butti G, Magrassi L, Danova M, Riccardi A, Gaetani P: Cell-kinetic characteristics of human brain tumors. Oncology 47: 344–351, 1990.

    PubMed  CAS  Google Scholar 

  291. Raza A, Preisler HD, Mayers GL, Bankert R: Rapid enumeration of S-phase cells by means of monoclonal antibodies. New Engl J Med 310: 991, 1984.

    PubMed  CAS  Google Scholar 

  292. Pollack IF, Campbell JW, Hamilton RL, Martinez AJ, Bozik ME: Proliferation index as a predictor of prognosis in malignant gliomas of childhood. Cancer 79: 849–856, 1997.

    Article  PubMed  CAS  Google Scholar 

  293. Hamada K, Kuratsu J, Saitoh Y, Takeshima H, Nishi T, Ushio Y: Expression of tissue factor in glioma. Noshuyo Byori 13: 115–118, 1996.

    PubMed  CAS  Google Scholar 

  294. Reyes-Mugica M, Rieger-Christ K, Ohgaki H, Ekstrand BC, Helie M, Kleinman G, Yahanda A, Fearon ER, Kleihues P, Reale MA: Loss of DCC expression and glioma progression. Cancer Res 57: 382–386, 1997.

    PubMed  CAS  Google Scholar 

  295. Zurawel RH, Chiappa SA, Allen C, Raffel C: Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res 58: 896–899, 1998.

    PubMed  CAS  Google Scholar 

  296. Janmaat ML, Giaccone G: Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8: 576–586, 2003.

    Article  PubMed  CAS  Google Scholar 

  297. Carpenter G, Cohen S: Epidermal growth factor. Ann Rev Biochem 48: 193–216, 1979.

    PubMed  CAS  Google Scholar 

  298. Gregory H: Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature 257: 325–327, 1975.

    Article  PubMed  CAS  Google Scholar 

  299. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212, 1990.

    Article  PubMed  CAS  Google Scholar 

  300. Prigent SA, Lemoine NR: The type I (EGFR-related) family of growth factor receptors and their ligands. Prog Growth Factor Res 4: 1–24, 1992.

    Article  PubMed  CAS  Google Scholar 

  301. Plowman GD, Culouscou J-M, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M: Ligand-specific activation of HER-4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 90: 1746–1750, 1993.

    PubMed  CAS  Google Scholar 

  302. Plowman GD, Green JM, Culouscou J-M, Carlton GW, Rothwell VM, Sharon B: Heregulin induces tyrosine phosphorylation of HER-4/p180erbB-4. Nature 366: 473–475, 1993.

    Article  PubMed  CAS  Google Scholar 

  303. Zelada-Hedman M, Werer G, Collins P, Backdahl M, Perez I, Franco S, Jimenez J, Cruz J, Torroella M, Nordenskjold M, Skoog L, Lindblom A: High expression of the EGFR in fibroadenomas compared to breast carcinomas. Anticancer Res 14: 1679–1688, 1994.

    PubMed  CAS  Google Scholar 

  304. Sahin AA: Biologic and clinical significance of HER-2/neu (cerbB-2) in breast cancer. Adv Anat Pathol 7: 158–166, 2000.

    PubMed  CAS  Google Scholar 

  305. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307: 521–527, 1984.

    Article  PubMed  CAS  Google Scholar 

  306. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y: Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15: 2452–2467, 1996.

    PubMed  CAS  Google Scholar 

  307. Stoker MGP, Pigott D, Taylor-Papadimitrious J: Response to epidermal growth factor of cultured human mammary epithelial cells from benign tumours. Nature 264: 764–767, 1976.

    PubMed  CAS  Google Scholar 

  308. Coleman S, Silberstein GB, Daniel CW: Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 127: 304–315, 1988.

    Article  PubMed  CAS  Google Scholar 

  309. Combes RC, Barret-Lee P, Luqmani Y: Growth factor expression in breast tissue. J Steroid Biochem Mol Biol 37: 833–836, 1990.

    Google Scholar 

  310. Derynck R: Transforming growth factor-beta. Cell 54: 593–595, 1988.

    Article  PubMed  CAS  Google Scholar 

  311. Gottlieb AB, Chang CK, Posnett DN, Fanelli B, Tam JP: Detection of transforming growth factor-beta in normal, malignant, and hyperproliferative human keratinocytes. J Exp Med 167: 670–675, 1988.

    Article  PubMed  CAS  Google Scholar 

  312. Elder JT, Fisher GJ, Lindquist PB, Bennett GL, Pittelkow MR, Coffey RJ Jr, Ellingsworth L, Derynck R, Voorhees JJ: Overexpression of transforming growth factor β in psoriatic epidermis. Science 243: 811–814, 1989.

    PubMed  CAS  Google Scholar 

  313. Rajkumar T, Gullick WJ: A monoclonal antibody to the human c-erbB3 protein stimulates the anchorage-independent growth of breast cancer cell lines. Br J Cancer 70: 459–465, 1994.

    PubMed  CAS  Google Scholar 

  314. Toyoda H, Komurasaki T, Uchida D, Takayama Y, Isobe T, Okuyama T, Hanada K: Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem 270: 7495–7500, 1995.

    PubMed  CAS  Google Scholar 

  315. Damjanov I, Mildner B, Knowles BB: Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest 55: 588–592, 1986.

    PubMed  CAS  Google Scholar 

  316. Maguire HC, Green MI: The neu (c-erbB-2) oncogene. Semin Oncol 16: 148–155, 1989.

    PubMed  CAS  Google Scholar 

  317. Lupu R, Colomer R, Zugmaier G, Sarup J, Shepard M, Slamon D, Lippman ME: Direct interaction of a ligand for erbB2 oncogene product with the EGF receptor and p185erbB2. Science 249: 1552–1555, 1990.

    PubMed  CAS  Google Scholar 

  318. Volas GH, Leitzel K, Teramoto Y, Grossberg H, Demers L, Lipton A: Serial serum c-erbB-2 levels in patients with breast carcinoma. Cancer 78: 267–272, 1996.

    Article  PubMed  CAS  Google Scholar 

  319. Dougall WC, Qian X, Peterson NC, Miller MJ, Samanta A, Greene MI: The neuoncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9: 2109–2123, 1994.

    PubMed  CAS  Google Scholar 

  320. Lee K-F, Simon H, Chen H, Bates B, Hung M-C, Hauser C: Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378: 394–398, 1995.

    PubMed  CAS  Google Scholar 

  321. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB, Yarden Y: Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205–216, 1992.

    Article  PubMed  CAS  Google Scholar 

  322. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, Trail G, Hu S, Silbiger SM, Levy RB: Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69: 559–572, 1992.

    Article  PubMed  CAS  Google Scholar 

  323. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD: Identification of heregulin, a specific activator of p185erbB2. Science 256: 1205–1210, 1992.

    PubMed  CAS  Google Scholar 

  324. Falls DL, Rosen KM, CorFas G, Lane WS, Fischbach GD: ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72: 801–815, 1993.

    Article  PubMed  CAS  Google Scholar 

  325. Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhalter J, Kobayashi K: Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362: 312–318, 1993.

    Article  PubMed  CAS  Google Scholar 

  326. Carraway KL III, Sliwkowski MX, Akita R, Platko JV, Gy PM, Naijens A, Diamonti AJ, Vandlen RL, Cantley LC, Cerione RA: The erbB3 gene product is a receptor for heregulin. J Biol Chem 269: 14303–14306, 1994.

    PubMed  CAS  Google Scholar 

  327. Groenen LC, Nice EC, Burgess AW: Structure-function relationships for the EGF/TGF-family of mitogens. Growth Factors 11: 235–257, 1994.

    PubMed  CAS  Google Scholar 

  328. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA: Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 86: 9193–9197, 1989.

    PubMed  CAS  Google Scholar 

  329. Fisher DA: Epidermal growth factor in the developing mammal. Mead Johnson Symp Perinat Dev Med 32: 33–40, 1988.

    PubMed  Google Scholar 

  330. Muhlhauser J, Crescimanno C, Kaufmann P, Hofler H, Zaccheo D, Castellucci M: Differentiation and proliferation patterns in human trophoblast revealed by c-erbB-2 oncogene product and EGF-R. J Histochem Cytochem 41: 165–173, 1993.

    PubMed  CAS  Google Scholar 

  331. CorFas G, Rosen KM, Aratake H, Krauss R, Fischbach GD: Differential expression of ARIA isoforms in the rat brain. Neuron 14: 103–115, 1995.

    Article  PubMed  CAS  Google Scholar 

  332. Meyer D, Birchmeier C: Multiple essential functions of neuregulin in development. Nature 378: 386–390, 1995.

    PubMed  CAS  Google Scholar 

  333. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G: Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378: 390–394, 1995.

    Article  PubMed  CAS  Google Scholar 

  334. Screpanti I, Scarpa S, Meco D, Bellaria D, Stuppia L, Frati L, Modesti A, Gulino A: Epidermal growth factor promotes a neural phenotype in thymic epithelial cells and enhances neuropoietic cytokine expression. J Cell Biol 130: 183–192, 1995.

    Article  PubMed  CAS  Google Scholar 

  335. Gullick WJ: Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull 47: 87–98, 1991.

    PubMed  CAS  Google Scholar 

  336. Lofts FJ, Gullick WJ: C-erbB2 amplification and overexpression in human tumors. In: Oncogenes and Hormones: Advances in Cellular and Molecular Biology of Breast Cancer., ed. RB Dickson and ME Lippman. Boston: GenesBoston, Kluwer Academic Publishers. pp. 161–179, 1991.

    Google Scholar 

  337. Salomon DS, Brandt R, Ciardiello F: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19: 183–232, 1995.

    PubMed  CAS  Google Scholar 

  338. Chow NH, Liu HS, Lee EI, Chang CJ, Chan SH, Cheng HL, Tzai TS, Lin JS: Significance of urinary epidermal growth factor and its receptor expression in human bladder cancer. Anticancer Res 17: 1293–1296, 1997.

    PubMed  CAS  Google Scholar 

  339. Fischer-Colbrie J, Witt A, Heinzl H, Speiser P, Czerwenka K, Sevelda P, Zeillinger R: EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 17: 613–619, 1997.

    PubMed  CAS  Google Scholar 

  340. Ke LD, Adler-Storthz K, Clayman GL, Yung AW, Chen Z: Differential expression of epidermal growth factor receptor in human head and neck cancers. Head Neck 20: 320–327, 1998.

    Article  PubMed  CAS  Google Scholar 

  341. Grandis JR, Melhem MF, Barnes EL, Tweardy DJ: Quantitative immunohistochemical analysis of transforming growth factor-α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78: 1284–1292, 1996.

    Article  CAS  Google Scholar 

  342. Radinsky R, Risin, Fan, Dong, Bielenberg, Bucana, Fidler: Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1: 19–31, 1995.

    PubMed  CAS  Google Scholar 

  343. de Jong JS, van Diest PJ, van der Valk P, Baak JP: Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J Pathol 184: 53–57, 1998.

    PubMed  Google Scholar 

  344. Hackel PO, Zwick E, Prenzel N, Ullrich A: Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11: 184–189, 1999.

    Article  PubMed  CAS  Google Scholar 

  345. Baselga J, Averbuch SD: ZD1839 (‘Iressa’) as an anticancer agent. Drugs 60 Suppl 1: 33–40; discussion 41–42, 2000.

    PubMed  CAS  Google Scholar 

  346. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ: A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–5086, 1996.

    PubMed  CAS  Google Scholar 

  347. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987.

    PubMed  CAS  Google Scholar 

  348. Varley JM, Swallow JE, Brammar WJ, Wittaker JL, Walker RA: Alterations to either c-erbB2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor shortterm prognosis. Oncogene 1: 423–430, 1987.

    PubMed  CAS  Google Scholar 

  349. Rios MA, Marcias A, Perez R, Lage A, Skoog L: Receptors for epidermal growth factor and estrogen as predictors of relapse in patients with mammary carcinoma. Anticancer Res 8: 173–176, 1988.

    PubMed  CAS  Google Scholar 

  350. Tauchi K, Hori S, Osamura RY, Tokuda Y, Tajima T: Immunohistochemical studies on oncogene products (c-erbB-2, EGFR, c-myc) and estrogen receptor in benign and malignant breast lesions. With special reference to their prognostic significance in carcinoma. Virchows Arch A Pathol Anat Histopathol 416: 65–73, 1989.

    Article  PubMed  CAS  Google Scholar 

  351. Moller P, Mechtersheimer G, Kaufmann M, Moldenhauer G, Momburg F, Mattfeldt T, Otto HF: Expression of epidermal growth factor receptor in benign and malignant primary tumors of the breast. Virchows Archiv A Pathol Anat Histopathol 414: 157–164, 1989.

    CAS  Google Scholar 

  352. Parkes HC, Lillicrop K, Howell A, Craig RK: c-erbB2 mRNA expression in human breast tumours: comparison with c-erbB2 DNA amplification and correlation with prognosis. Br J Cancer 61: 39–45, 1990.

    PubMed  CAS  Google Scholar 

  353. Goldman R, Ben-Levy R, Peles E, Yarden Y: Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 29: 11024–11028, 1990.

    Article  PubMed  CAS  Google Scholar 

  354. Hainsworth PJ, Henderson MA, Stillwell RG, Bennett RC: Comparison of EGF-R, c-erbB-2 product and ras p21 immunohistochemistry as prognostic markers in primary breast cancer. Eur J Surg Oncol 17: 9–15, 1991.

    PubMed  CAS  Google Scholar 

  355. Allred DC, Clark GM, Tandon AK, Molina R, Torney DC, Osborne CK, Gilchrist KW, Mansour EG, Abeloff M, Eudey L, McGuire WL: HER2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 10: 599–605, 1992.

    PubMed  CAS  Google Scholar 

  356. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Save-Soderborgh J, Anbazhagan R, Styles J, Rudenstam CM, Golouh R, Reed R, Martinez-Tello F, Tiltman A, Torhorst J, Grigolato P, Bettelheim R, Neville AM, Burki K, Castigione M, Collins J, Lindtner J, Senn HJ: Prognostic importance of c-erbB2 expression in breast cancer. J Clin Oncol 10: 1049–1056, 1992.

    PubMed  CAS  Google Scholar 

  357. Koenders PG, Beex LV, Kienhuis CB, Kloppenborg PW, Benraad TJ: Epidermal growth factor receptor and prognosis in human breast cancer: a prospective study. Breast Cancer Res Treat 25: 21–27, 1993.

    Article  PubMed  CAS  Google Scholar 

  358. Klijn JGM, Berns PMJJ, Schmitz PIM, Foekens JA: The clinical significance of epidermal growth factor receptor (EGFR) in human breast cancer: a review on 5232 patients. Endocrine Rev 13: 3–17, 1992.

    Article  CAS  Google Scholar 

  359. Dittadi R, Donisi PM, Brazzale A, Cappellozza L, Bruscagnin G, Gion M: Epidermal growth factor receptor in breast cancer. Comparison with non-malignant breast tissue. Br J Cancer 67: 7–9, 1993.

    PubMed  CAS  Google Scholar 

  360. Allan SM, Fernando IN, Sandle J, Trott PA: Expression of the c-erbB-2 gene product as detected in cytologic aspirates in breast cancer. Acta Cytol 37: 981–982, 1993.

    PubMed  CAS  Google Scholar 

  361. Jardines L, Weiss M, Fowble B, Greene M: neu(c-erbB-2/HER2) and the epidermal growth factor receptor (EGFR) in breast cancer. Pathobiology 61: 268–282, 1993.

    PubMed  CAS  Google Scholar 

  362. Gramlich TL, Cohen C, Fritsch C, De Rose PB, Gansler T: Evaluation of c-erbB-2 amplification in breast carcinoma by differential polymerase chain reaction. Am J Clin Pathol 101: 493–499, 1994.

    PubMed  CAS  Google Scholar 

  363. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, Di Fiore PP, Kraus MH: Cooperative signaling of ErbB-3 and ErbB-2 in neoplastic transformation and human mammary carcinoma cells. Oncogene 10: 1813–1821, 1995.

    PubMed  CAS  Google Scholar 

  364. Ravdin PM, Chamness GC: The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers. Gene 159: 19–27, 1995.

    Article  PubMed  CAS  Google Scholar 

  365. Kreipe H, Feist H, Fischer L, Felgner J, Heidorn K, Mettler L, Parwaresch R: Amplification of c-myc but not of c-erbB-2 is associated with high proliferative capacity in breast cancer. Cancer Res 53: 1956–1961, 1993.

    PubMed  CAS  Google Scholar 

  366. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712, 1989.

    PubMed  CAS  Google Scholar 

  367. Quinn CM, Ostrowski JL, Lane SA, Loney DP, Teasdale J, Benson FA: c-erbB-3 protein expression in human breast cancer: comparison with other tumour variables and survival. Histopathology 25: 247–252, 1994.

    PubMed  CAS  Google Scholar 

  368. Shintani S, Funayama T, Yoshihama Y, Alcalde RE, Matsumura T: Prognostic significance of ERBB3 overexpression in oral squamous cell carcinoma. Cancer Lett 95: 79–83, 1995.

    Article  PubMed  CAS  Google Scholar 

  369. Simpson BJ, Weatherill J, Miller EP, Lessells AM, Langdon SP, Miller WR: c-erbB-3 protein expression in ovarian tumours. Br J Cancer 71: 758–762, 1995.

    PubMed  CAS  Google Scholar 

  370. Antoniotti S, Taverna D, Maggiora P, Sapei ML, Hynes NE, De Bortoli M: Oestrogen and epidermal growth factor down-regulate erbB-2 oncogene protein expression in breast cancer cells by different mechanisms. Br J Cancer 70: 1095–1101, 1994.

    PubMed  CAS  Google Scholar 

  371. Herlyn M: Molecular and cellular basis of melanoma. Austin, KG Landers Co, 1993.

    Google Scholar 

  372. Clark WH Jr, Elder DE, Guerry D, Epstein ME, Greene MH, van Horn M: A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15: 1147–1165, 1984.

    PubMed  Google Scholar 

  373. Greene MH, Clark WH Jr, Tucker MA, Elder DE, Kraemer KH, Guerry D 4th, Witmer WK, Thompson J, Matozzo I, Fraser MC: Acquired precursors of cutaneous malignant melanoma. The familial dysplastic nevus syndrome. N Engl J Med 312: 91–97, 1985.

    PubMed  CAS  Google Scholar 

  374. Bodey B, Kaiser HE, Goldfarb RH: Immunophenotypically varied cell subpopulations in primary and metastatic human melanomas. Monoclonal antibodies for diagnosis, detection of neoplastic progression and receptor directed immunotherapy. Anticancer Res 16: 517–531, 1996.

    PubMed  CAS  Google Scholar 

  375. Marquardt H, Todaro GJ: Human transforming growth factor. Production by melanoma cell line, purification, and initial characterization. J Biol Chem 257: 5220–5225, 1982.

    PubMed  CAS  Google Scholar 

  376. Delarco JE, Pigott DA, Lazarus JA: Ectopic peptides released by a human melanoma cell line that modulate the transformed phenotype. Proc Natl Acad Sci USA 82: 5015–5019, 1985.

    CAS  Google Scholar 

  377. Anisowicz A, Bardwell L, Sager R: Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc Natl Acad Sci USA 84: 7188–7192, 1987.

    PubMed  CAS  Google Scholar 

  378. Herlyn M, Clark WH, Rodeck U, Mancianti ML, Jambrosic J, Koprowski H: Biology of tumor progression in human melanocytes. Lab Invest 56: 461–474, 1987.

    PubMed  CAS  Google Scholar 

  379. Ellis DL, Nanney LB, King LE Jr: Increased epidermal growth factor receptors in seborrheic keratoses and acrochordons of patients with dysplastic nevus syndrome. J Am Acad Dermatol 23: 1070–1077, 1990.

    PubMed  CAS  Google Scholar 

  380. Bodey B, Bodey B Jr, Groger AM, Luck JV, Siegel SE, Taylor CR, Kaiser HE: Clinical and prognostic significance of the expression of the c-erbB-2 and c-erbB-3 oncoproteins in primary and metastatic malignant melanomas and breast carcinomas. Anticancer Res 17: 1319–1330, 1997.

    PubMed  CAS  Google Scholar 

  381. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ: The significance of oncogene amplification in primary breast cancer. Int J Cancer 43: 270–273, 1989.

    PubMed  CAS  Google Scholar 

  382. Allred DC, O’Connell P, Fuqua AW: Biomarkers in early breast neoplasia. J Cell Biochem 17G: 125–131, 1993.

    CAS  Google Scholar 

  383. Barnes DM: c-erbB-2 amplification in mammary carcinoma. J Cell Biochem 17G: 132–138, 1993.

    CAS  Google Scholar 

  384. Symmans WF, Liu J, Knowles DM, Inghirami G: Breast cancer heterogeneity: evaluation of clonality in primary and metastatic lesions. Hum Pathol 26: 210–216, 1995.

    Article  PubMed  CAS  Google Scholar 

  385. Hiesiger EM, Hayes RL, Pierz DM, Budzilovich GN: Prognostic relevance of epidermal growth factor receptor (EGF-R) and c-neu/erbB2 expression in glioblastomas (GBMs). J Neurooncol 16: 93–104, 1993.

    Article  PubMed  CAS  Google Scholar 

  386. Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC: c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 54: 3260–3266, 1994.

    PubMed  CAS  Google Scholar 

  387. Tsugawa K, Fushida S, Yonemura Y: Amplification of the c-erbB-2 gene in gastric carcinoma: correlation with survival. Oncology 50: 418–425, 1993.

    PubMed  CAS  Google Scholar 

  388. Swanson PE, Frierson HF JR, Wick MR: c-erbB-2 (HER2/neu) oncopeptide immunoreactivity in localized, high grade transitional cell carcinoma of the bladder. Mod Pathol 5: 531–536, 1992.

    PubMed  CAS  Google Scholar 

  389. Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW: Expression of the c-erbB-2 (HER2/neu) oncoprotein in human prostatic carcinoma. J Urol 150: 1427–1433, 1993.

    PubMed  CAS  Google Scholar 

  390. Ross JS, Nazeer T, Church K, Amato C, Figge H, Rifkin MD, Fisher HA: Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer 72: 3020–3028, 1993.

    PubMed  CAS  Google Scholar 

  391. Berchuck A, Rodriguez G, Kinney RB, Soper JT, Dodge RK, Clarke-Pearson DL, Bast RC Jr: Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol 164: 15–21, 1991.

    PubMed  CAS  Google Scholar 

  392. Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podartz KC: HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol 47: 179–185, 1992.

    Article  PubMed  CAS  Google Scholar 

  393. Reinartz JJ, George E, Lindgren BR, Niehans GA: Expression of p53, transforming growth factor β, epidermal growth factor receptor, and c-erbB-2 in endometrial carcinoma and correlation with survival and known predictors of survival. Hum Pathol 25: 1075–1083, 1994.

    Article  PubMed  CAS  Google Scholar 

  394. Pisani AL, Barbuto DA, Chen D, Ramos L, Lagasse LD, Karlan BY: HER2-neu, p53, and DNA analyses as prognostic factors for survival in endometrial carcinoma. Obstet Gynecol 85: 729–734, 1995.

    Article  PubMed  CAS  Google Scholar 

  395. Saffari B, Jones LA, El-Naggar A, Felix JC, George J, Press MF: Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res 55: 5693–5698, 1995.

    PubMed  CAS  Google Scholar 

  396. Ro J, El-Naggar A, Ro JY, Blick M, Fraschini F, Fritsche H, Hortobagyi G: c-erbB-2 amplification in node-negative breast cancer. Cancer Res 49: 6941–6944, 1989.

    PubMed  CAS  Google Scholar 

  397. Walker RA, Gullick WJ, Varley JM: An evaluation of immunoreactivity for c-erbB-2 protein as a marker of poor short-term prognosis in breast cancer. Br J Cancer 60: 426–429, 1989.

    PubMed  CAS  Google Scholar 

  398. Wright C, Angus B, Nicholson S, Sainsbury RC, Cairns J, Gullick WJ, Kelly P, Harris AL, Horne CHW: Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res 49: 2087–2090, 1989.

    PubMed  CAS  Google Scholar 

  399. Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Ryden S, Sigurdsson H: erbB-2 amplification in breast cancer with a high rate of proliferation. Oncogene 60: 137–143, 1991.

    Google Scholar 

  400. Gullick WJ, Love SB, Wright C, Barnes DM, Gusterson B, Harris AL, Altman DG: c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br J Cancer 63: 434–438, 1991.

    PubMed  CAS  Google Scholar 

  401. Kallioniemi O-P, Holli K, Visakorpi T, Koivula T, Helin HH, Isola JJ: Association of c-erbB-2 oncogene overexpression with high rate of cell proliferation, increased risk for visceral metastasis and poor long-term survival in breast cancer. Int J Cancer 49: 650–655, 1991.

    PubMed  CAS  Google Scholar 

  402. Lovekin C, Ellis IO, Locker A, Robertson JF, Bell J, Nicholson R, Gullick WJ, Elston CW, Blamey RW: c-erbB-2 oncoprotein expression in primary and advanced breast cancer. Br J Cancer 63: 439–443, 1991.

    PubMed  CAS  Google Scholar 

  403. O’Reilly SM, Barnes DM, Camplejohn RS, Bartkova J, Gregory WM, Richards MA: The relationship between c-erbB-2 expression, S-phase fraction and prognosis in breast cancer. Br J Cancer 63: 444–446, 1991.

    PubMed  CAS  Google Scholar 

  404. Paterson MC, Dietrich KD, Danyluk J, Paterson AH, Lees AW, Jamil N, Hanson J, Jenkins H, Krause BE, McBlain WA, Slamon DJ, Fourney RM: Correlation between c-erbB-2 amplification and risk of early relapse in node-negative breast cancer. Cancer Res 51: 556–567, 1991.

    PubMed  CAS  Google Scholar 

  405. Rilke F, Colnaghi MI, Cascinelli N, Andreola S, Baldini MT, Bufalino R, Della Porta G, Menard S, Pierotti MA, Testori A: Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 49: 44–49, 1991.

    PubMed  CAS  Google Scholar 

  406. Winstanley J, Cooke T, Murray GD, Platt-Higgins A, George WD, Holt S, Myskov M, Spedding A, Barraclough BR, Rudland PS: The long term prognostic significance of c-erbB-2 in primary breast cancer. Br J Cancer 63: 447–450, 1991.

    PubMed  CAS  Google Scholar 

  407. Campani D, Sarnelli R, Fontanini G, Martini L, Cecchetti D, De Luca F, Squartini F: Receptor status, proliferating activity, and c-erbB2 oncoprotein. An immunocytochemical evaluation in breast cancer. Ann NY Acad Sci 698: 167–173, 1993.

    PubMed  CAS  Google Scholar 

  408. Press MF, Pike MC, Chazin VR, Hung G, Udove JA, Markowicz M, Danyluk J, Godolphin W, Sliwkowski M, Akita R, Brandeis J, Paterson MC, Slamon DJ: HER-2/neu expression in node-negative breast cancers: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res 53: 4960–4970, 1993.

    PubMed  CAS  Google Scholar 

  409. Tsuchiya A, Katagata N, Kimijima I, Abe R: Immunohistochemical overexpression of c-erbB-2 in the prognosis of breast cancer. Surg Today 23: 885–890, 1993.

    PubMed  CAS  Google Scholar 

  410. Horiguchi J, Iino Y, Takei H, Yokoe T, Ishida T, Morishita Y: Immunohistochemical study on the expression of c-erbB-2 oncoprotein in breast cancer. Oncology 51: 47–51, 1994.

    PubMed  CAS  Google Scholar 

  411. Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, Cirrincione CT, Budman DR, Wood WC, Barcos M: c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330: 1260–1266, 1994.

    Article  PubMed  CAS  Google Scholar 

  412. Pechoux C, Chardonnet Y, Noel P: Immunohistochemical studies on c-erbB-2 oncoprotein expression in paraffin embedded tissues in invasive and non-invasive human breast lesions. Anticancer Res 14: 1343–1360, 1994.

    PubMed  CAS  Google Scholar 

  413. Zschiesche W, Schonborn I, Minguillon C, Spitzer E: Significance of immunohistochemical c-erbB-2 product localization pattern for prognosis of primary human breast cancer. Cancer Lett 81: 89–94, 1994.

    Article  PubMed  CAS  Google Scholar 

  414. Szöllösi J, Balázs M, Feuerstein BG, Benz CC, Waldman FM: ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. Cancer Res 55: 5400–5407, 1995.

    PubMed  Google Scholar 

  415. Ali IU, Campbell G, Lidereau R, Callahan R: Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res 3: 139–146, 1988.

    PubMed  CAS  Google Scholar 

  416. Barnes DM, Lammie GA, Millis RR, Gullick WL, Allen DS, Altman DG: An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer 58: 448–452, 1988.

    PubMed  CAS  Google Scholar 

  417. Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Elliott C, Ashley S, Monaghan P, Harrison S: c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 58: 453–457, 1988.

    PubMed  CAS  Google Scholar 

  418. Van De Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R: neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319: 1239–1245, 1988.

    PubMed  Google Scholar 

  419. Zhou D-J, Ahuja H, Cline MJ: Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. Oncogene 4: 105–108, 1989.

    PubMed  CAS  Google Scholar 

  420. Kury F, Sliutz G, Schemper M, Reiner G, Reiner A, Jakesz R, Wrba F, Zeillinger R, Knogler W, Huber J, Holzner H, Spona J: HER-2 oncogene amplification and overals survival of breast carcinoma patients. Eur J Cancer 26: 946–949, 1990.

    PubMed  CAS  Google Scholar 

  421. Richner J, Gerber HA, Locher GW, Goldhirsch A, Gelber RD, Gullick WJ, Berger MS, Groner B, Hynes NE: c-erbB-2 protein expression in node negative breast cancer. Ann Oncol 1: 263–268, 1990.

    PubMed  CAS  Google Scholar 

  422. Clark GM, McGuire WL: Follow-up study of HER-2/neu amplification in primary breast cancer. Cancer Res 51: 944–948, 1991.

    PubMed  CAS  Google Scholar 

  423. Press MF, Hung G, Godolphin W, Slamon DJ: Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res 54: 2771–2777, 1994.

    PubMed  CAS  Google Scholar 

  424. Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E, Prigent SA, Gullick WJ, Hurst HC: Expression of erbB3 gene product in breast cancer. Br J Cancer 66: 1116–1121, 1992.

    PubMed  CAS  Google Scholar 

  425. Poller DN, Spendlove I, Baker C, Church R, Ellis IO, Plowman GD, Mayer RJ: Production and characterisation of a polyclonal antibody to the c-erbB3 protein: Examination of c-erbB3 protein expression in adenocarcinomas. J Pathol 168: 275–280, 1992.

    Article  PubMed  CAS  Google Scholar 

  426. Sanidas EE, Filipe MI, Linehan J, Lemoine NR, Gullick WJ, Rajkumar T, Levison DA: Expression of the c-erbB3 gene product in gastric cancer. Int J Cancer 54: 935–940, 1993.

    PubMed  CAS  Google Scholar 

  427. Rajkumar T, Gooden CSR, Lemoine NR, Gullick WJ: Expression of the c-erbB3 protein in gastrointestinal tract tumours determined by monoclonal antibody RTJ1. J Pathol 170: 271–278, 1993.

    Article  PubMed  CAS  Google Scholar 

  428. Lemoine NR, Lobresco M, Leung H, Barton C, Hughes CM, Prigent SA, Gullick WJ, Kloppel G: The erbB3 gene in human pancreatic cancer. J Pathol 168: 269–273, 1992.

    PubMed  CAS  Google Scholar 

  429. Arteaga CL: ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res 284: 122–130, 2003.

    Article  PubMed  CAS  Google Scholar 

  430. Gill S, Thomas RR, Goldberg RM: New targeted therapies in gastrointestinal cancers. Curr Treat Options Oncol 4: 393–403, 2003.

    PubMed  Google Scholar 

  431. Janmaat ML, Giaccone G: The epidermal growth factor receptor pathway and its inhibition as anticancer therapy. Drugs Today (Barc) 39 Suppl C: 61–80, 2003.

    CAS  Google Scholar 

  432. Batinac T, Gruber F, Lipozencic J, Zamolo-Koncar G, Stasic A, Brajac I: Protein p53—structure, function, and possible therapeutic implications. Acta Dermatovenerol Croat 11: 225–230, 2003.

    PubMed  Google Scholar 

  433. Demonacos C, La Thangue NB: Drug discovery and the p53 family. Prog Cell Cycle Res 5: 375–382, 2003.

    PubMed  Google Scholar 

  434. Melino G, Lu X, Gasco M, Crook T, Knight RA: Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 28: 663–670, 2003.

    Article  PubMed  CAS  Google Scholar 

  435. Alarcon RM, Rupnow BA, Graeber TG, Knox SJ, Giaccia AJ: Modulation of c-Myc activity and apoptosis in vivo. Cancer Res 56: 4315–4319, 1996.

    PubMed  CAS  Google Scholar 

  436. Marshall CJ: Tumor suppressor genes. Cell 64: 313–326, 1991.

    Article  PubMed  CAS  Google Scholar 

  437. Bodey B, Bodey B Jr, Siegel SE: Tumor Suppressor Genes in Childhood Malignancies. A Review. Int J Pediatric Hematol/Oncol 6: 47–64, 1998.

    Google Scholar 

  438. Lane DP, Crawford LV: T-antigen is bound to host protein in SV40-transformed cells. Nature 278: 261–263, 1979.

    Article  PubMed  CAS  Google Scholar 

  439. Sarnow P, Ho YS, Williams J, Levine AJ: Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387–394, 1982.

    Article  PubMed  CAS  Google Scholar 

  440. Werness BA, Levine AJ, Howley PM: Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79, 1990.

    PubMed  CAS  Google Scholar 

  441. Bartek J, Bartkova J, Vojtesek B, Staskova Z, Lukas J, Rejthar A, Kovarik J, Midgley CA, Gannon JV, Lane DP: Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6: 1699–1703, 1991.

    PubMed  CAS  Google Scholar 

  442. Carbon De Fromentel C, Soussi T: TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4: 1–15, 1992.

    Google Scholar 

  443. Greenblatt MS, Bennett WP, Hollstein M, Harris CC: Mutations in the p53 tumor suppressor genes: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878, 1994.

    PubMed  CAS  Google Scholar 

  444. Hollstein M, Sidransky D, Vogelstein B, Harris C: p53 mutations in human cancers. Science 253: 252–254, 1991.

    Google Scholar 

  445. Malkin D, Li FP, Strong LC, Fraumeni JF JR, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238, 1990.

    PubMed  CAS  Google Scholar 

  446. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH: Germ-line transmission of a mutated p53 gene in cancer-prone family with Li-Fraumeni syndrome. Nature 348: 747–749, 1990.

    Article  PubMed  CAS  Google Scholar 

  447. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R: p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88: 5413–5417, 1991.

    PubMed  CAS  Google Scholar 

  448. Chen P, Iavarone A, Fick J, Edwards M, Prados M, Israel MA: Constitutional p53 mutations associated with brain tumors in young adults. Genet Cytogenet 82: 106–115, 1995.

    CAS  Google Scholar 

  449. Kyritsis AP, Xu R, Bondy ML, Levin VA, Bruner JM: Correlation of p53 immunoreactivity and sequencing in patients with glioma. Molec Carcinogen 15: 1–4, 1996.

    CAS  Google Scholar 

  450. Cho MY, Jung SH, Kim TS: p53 protein overexpression in astrocytic neoplasms. Yonsei Med J 36: 521–526, 1995.

    PubMed  CAS  Google Scholar 

  451. Ellison DW, Steart PV, Bateman AC, Pickering RM, Palmer JD, Weller RO: Prognostic indicators in a range of astrocytic tumours: an immunohistochemical study with Ki-67 and p53 antibodies. J Neurol Neurosurg Psych 59: 413–419, 1995.

    CAS  Google Scholar 

  452. Kordek R, Biernat W, Alwasiak J, Maculewicz R, Yanagihara R, Liberski PP: p53 protein and epidermal growth factor receptor expression in human astrocytomas. J Neuro-Oncol 26: 11–16, 1995.

    Article  CAS  Google Scholar 

  453. Sarkar C, Ralte AM, Sharma MC, Mehta VS: Recurrent astrocytic tumours—a study of p53 immunoreactivity and malignant progression. Br J Neurosurg 16: 335–342, 2002.

    Article  PubMed  CAS  Google Scholar 

  454. Lee CS, Pirdas A, Lee MW: p53 in cutaneous melanoma: immunoreactivity and correlation with prognosis. Australasian J Dermatol 36: 192–195, 1995.

    CAS  Google Scholar 

  455. Bergman R, Shemer A, Levy R, Friedman-Birnbaum R, Trau H, Lichtig C: Immunohistochemical study of p53 protein expression in Spitz nevus as compared with other melanocytic lesions. Amer J Dermatopathol 17: 547–550, 1995.

    CAS  Google Scholar 

  456. Sparrow LE, English DR, Heenan PJ, Dawkins HJ, Taran J: Prognostic significance of p53 over-expression in thin melanomas. Melanoma Res 5: 387–392, 1995.

    PubMed  CAS  Google Scholar 

  457. Weiss J, Heine M, Arden KC, Korner B, Pilch H, Herbst RA, Jung EG: Mutation and expression of TP53 in malignant melanomas. Recent Results Cancer Res 139: 137–154, 1995.

    PubMed  CAS  Google Scholar 

  458. Takahashi T, Nau MM, Chiba T, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD: p53: a frequent target for genetic abnormalities in lung cancer. Science 246: 491–494, 1989.

    PubMed  CAS  Google Scholar 

  459. Miller CW, Simon K, Aslo A, Kok Y, Yokota J, Buys CHCM, Terada M, Koeffler HP: p53 mutations in human lung tumors. Cancer Res 52: 1695–1698, 1992.

    PubMed  CAS  Google Scholar 

  460. Husgafvel-Pursiainen K, Ridanpaa M, Anttila S, Vainio H: p53 and ras gene mutations in lung cancer: implications for smoking and occupational exposures. J Occupat Environ Med 37: 68–76, 1995.

    Google Scholar 

  461. Kawajiri K, Eguchi H, Nakachi K, Sekiya T, Yamamoto M: Association of CYP1A1 germ line polymorphisms with mutations of the p53 gene in lung cancer. Cancer Res 56: 72–76, 1996.

    PubMed  CAS  Google Scholar 

  462. Boers JE, Ten Velde GP, Thunnissen FB: p53 in squamous metaplasia: a marker for risk of respiratory tract carcinoma. Amer J Resp Crit Care Med 153: 411–416, 1996.

    CAS  Google Scholar 

  463. Kondo K, Tsuzuki H, Sasa M, Sumimoto M, Uyama T, MondeN Y: The dose-response relationship between the frequency of p53 mutations and tobacco consumption in lung cancer patients. J Surg Oncol 61: 20–26, 1996.

    Article  PubMed  CAS  Google Scholar 

  464. Tsai CM, Chang KT, Wu LH, Chen JY, Gazdar AF, Mitsudomi T, Chen MH, Pering RP: Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res 56: 206–209, 1996.

    PubMed  CAS  Google Scholar 

  465. Goldblum JR, Bartos RE, Carr KA, Frank TS: Hepatitis B and alterations of the p53 tumor suppressor gene in hepatocellular carcinoma. Am J Surg Pathol 17: 1244–1251, 1993.

    PubMed  CAS  Google Scholar 

  466. Ozturk M: p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338: 1356–1359, 1991.

    PubMed  CAS  Google Scholar 

  467. Hsu HC, Tseng HJ, Lai PL, Lee PH, Peng SY: Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res 53: 4691–4694, 1993.

    PubMed  CAS  Google Scholar 

  468. Tabor E: Tumor suppressor genes, growth factor genes, and oncogenes in hepatitis B virus-associated hepatocellular carcinoma. J Med Virol 42: 357–365, 1994.

    PubMed  CAS  Google Scholar 

  469. Campbell IG, Eccles DM, Dunn B, Davis M, Leake V: p53 polymorphism in ovarian and breast cancer. Lancet 347: 393–394, 1996.

    PubMed  CAS  Google Scholar 

  470. Horne GM, Anderson JJ, Tiniakos DG, McIntosh GG, Thomas MD, Angus B, Henry JA, Lennard TW, Horne CH: p53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. Brit J Cancer 73: 29–35, 1996.

    PubMed  CAS  Google Scholar 

  471. Callahan R: p53 mutations, another breast cancer prognostic factor. J Natl Cancer Inst 84: 826–827, 1992.

    PubMed  CAS  Google Scholar 

  472. Harris AL: p53 expression in human breast cancer. Adv Cancer Res 59: 69–88, 1992.

    PubMed  CAS  Google Scholar 

  473. Eeles RA, Bartkova J, Lane DP, Bartek J: The role of TP53 in breast cancer development. Cancer Surv 18: 57–75, 1993.

    PubMed  CAS  Google Scholar 

  474. Elledge RM, Allred DC: The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat 32: 39–47, 1994.

    Article  PubMed  CAS  Google Scholar 

  475. Karameris AM, Worthy E, Gorgoulis VG, Quezado M, Anastassiades OT: p53 gene alterations in special types of breast carcinoma: a molecular and immunohistochemical study in archival material. J Pathol 176: 361–372, 1995.

    Article  PubMed  CAS  Google Scholar 

  476. Ozbun MA, Butel JS: Tumor suppressor p53 mutations and breast cancer: a critical analysis. Adv Cancer Res 66: 71–141, 1995.

    PubMed  CAS  Google Scholar 

  477. Kovach JS, Hartmann A, Blaszyk H, Cunningham J, Schaid D, Sommer SS: Mutation detection by highly sensitive methods indicates that p53 gene mutations in breast cancer can have important prognostic value. Proc Natl Acad Sci USA 93: 1093–1096, 1996.

    Article  PubMed  CAS  Google Scholar 

  478. Liu B, Sun D, Xia W, Hung MC, Yu D: Cross-reactivity of C219 anti-p170(mdr-1) antibody with p185(c-erbB2) in breast cancer cells: cautions on evaluating p170(mdr-1). J Natl Cancer Inst 89: 1524–1529, 1997.

    Article  PubMed  CAS  Google Scholar 

  479. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Clearly K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708, 1989.

    Article  PubMed  CAS  Google Scholar 

  480. Lane DP: p53, guardian of the genome. Nature 358: 15–16, 1992.

    Article  PubMed  CAS  Google Scholar 

  481. Kern S, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708–1711, 1991.

    PubMed  CAS  Google Scholar 

  482. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091, 1991.

    Article  PubMed  CAS  Google Scholar 

  483. Marx J: New link found between p53 and DNA repair. Science 266: 1321–1322, 1994.

    PubMed  CAS  Google Scholar 

  484. Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D: Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87: 4766–4770, 1990.

    PubMed  CAS  Google Scholar 

  485. Meek DW, Simon S, Kikkawa U, Eckhart W: The p53 tumor suppressor protein is phosphorylated ar serine 389 by casein kinase II. EMBO J 9: 3253–3260, 1990.

    PubMed  CAS  Google Scholar 

  486. Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G: Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16: 1126–1137, 1996.

    PubMed  CAS  Google Scholar 

  487. Nikolaev AY, Li M, Puskas N, Qin J, Gu W: PARC: a cytoplasm anchor for p53. Cell 112: 1–2, 2003.

    Article  Google Scholar 

  488. Douc-Rasy S, Benard J: A new view on p53 protein cytoplasmic sequestration. Bull Cancer 90: 380–382, 2003.

    PubMed  Google Scholar 

  489. Nikolaev AY, Gu W: PARC: a potential target for cancer therapy. Cell Cycle 2: 169–171, 2003.

    PubMed  CAS  Google Scholar 

  490. Fridman JS, Lowe SW: Control of apoptosis by p53. Oncogene 22: 9030–9040, 2003.

    Article  PubMed  CAS  Google Scholar 

  491. SuN Y, Nakamura K, Wendel E, Colburn NH: Progression toward tumor cell phenotype is enhanced by overexpression of a mutant p53 tumor suppressor gene isolated from nasopharyngeal carcinoma. Proc Natl Acad Sci USA 90: 2827–2831, 1993.

    PubMed  CAS  Google Scholar 

  492. Bodey B, Gröger AM, Bodey B Jr, Siegel SE, Kaiser HE: Immunocytochemical detection of p53 protein overexpression in primary human osteosarcomas. Anticancer Res 17: 493–498, 1997.

    PubMed  CAS  Google Scholar 

  493. Eeles RA, Warren W, Knee G, Bartek J, Averill D, Stratton MR, Blake PR, Tait DM, Lane DP, Easton DF: Constitutional mutation in exon 8 of the p53 gene in a patient with multiple primary tumours: molecular and immunohistochemical findings. Oncogene 8: 1269–1276, 1993.

    PubMed  CAS  Google Scholar 

  494. Nose H, Imazeki F, Ohto M, Omata M: p53 gene mutations and 17p allelic deletions in hepatocellular carcinoma from Japan. Cancer 72: 355–360, 1993.

    PubMed  CAS  Google Scholar 

  495. Renault B, van den Broek M, Fodde R, Wijnen J, Pellegata NS, Amadori D, Khan PM, Ranzani GN: Base transitions are the most frequent genetic changes at p53 in gastric cancer. Cancer Res 53: 2614–2617, 1993.

    PubMed  CAS  Google Scholar 

  496. Iggo R, Gatter K, Bartek J, Lane D, Harris AL: Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335: 675–679, 1990.

    Article  PubMed  CAS  Google Scholar 

  497. John J, Frech M, Wittinghofer A: Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation. J Biol Chem 263: 11792–11799, 1988.

    PubMed  CAS  Google Scholar 

  498. Mazur M, Glickman BW: Sequence specificity of mutations induced by benzo[a]pyrene-7,8-diol-9,10-epoxide at endogenous aprt gene in CHO cells. Somat Cell Mol Genet 14: 393–400, 1988.

    Article  PubMed  CAS  Google Scholar 

  499. Stüzbecher HW, Chumakov P, Welch WJ, Jenkins JR: Mutant p53 proteins bind hsp 72.73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene 1: 201–211, 1987.

    Google Scholar 

  500. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ: Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8: 531–539, 1988.

    PubMed  CAS  Google Scholar 

  501. von Deimling A, Louis DN, Wiestler OD: Molecular pathways in the formation of gliomas. Glia 15: 328–338, 1995.

    Google Scholar 

  502. von Deimling A, Bender B, Jahnke R, Waha A, Kraus J, Albrecht S, Welenreuther R, Faßbender F, Nagel J, Menon AG, Louis DN, Lenartz DD, Schramm J, Wiestler OD: Loci associated with malignant progression in astrocytomas: A candidate on chromosome 19q. Cancer Res 54: 1397–1401, 1994.

    Google Scholar 

  503. Fults D, Petronio J, Noblett BD, Pedone CA: Chromosome 11p15 deletions in human malignant astrocytomas and primitive neuroectodermal tumors. Genomics 14: 799–801, 1992.

    Article  PubMed  CAS  Google Scholar 

  504. James CD, Carlblom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK: Clonal genomic alterations in glioma malignancy stages. Cancer Res 48: 5546–5551, 1988.

    PubMed  CAS  Google Scholar 

  505. James CD, He J, Carlblom E, Nordenskjold M, Cavenee WK, Collins VP: Chromosome 9 deletion mapping reveals interferon and interferon-1 gene deletions in human glial tumors. Cancer Res 51: 1684–1688, 1991.

    PubMed  CAS  Google Scholar 

  506. Olopade OI, Buchhagen DL, Malik K, Sherman J, Nobori T, Bader S, Nau MM, Gazdar AF, Minna JD, Diaz MO: Homozygous loss of the interferon genes defines the critical region on 9p that is deleted in lung cancers. Cancer Res 53: 2410–2415, 1993.

    PubMed  CAS  Google Scholar 

  507. Ransom DT, Ritland SR, Kimmel DW, Moertel CA, Dahl RJ, Scheithauer BW, Kelly PJ, Jenkins BR: Cytogenetic and loss of heterozygosity studies in ependymoma, pilocytic astrocytoma and oligodendrogliomas. Genes Chromosom Cancer 5: 348–356, 1992.

    PubMed  CAS  Google Scholar 

  508. Venter DJ, Bevan KL, Ludwig RL, Riley TEW, Jat PS, Thomas DGT, Noble MD: Retinoblastoma gene deletions in human glioblastomas. Oncogene 6: 445–448, 1991.

    PubMed  CAS  Google Scholar 

  509. von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, Kleihues P, Chung RY, Wiestler OD, Seizinger BR: p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52: 2987–2990, 1992.

    Google Scholar 

  510. Liu T, Yan H, Kuismanen S, Percesepe A, Bisgaard ML, Pedroni M, Benatti P, Kinzler KW, Vogelstein B, Ponz de Leon M, Peltomaki P, Lindblom A: The role of hPMS1 and hPMS2 in predisposing to colorectal cancer. Cancer Res 61: 7798–7802, 2001.

    PubMed  CAS  Google Scholar 

  511. Trojan J, Zeuzem S, Randolph A, Hemmerle C, Brieger A, Raedle J, Plotz G, Jiricny J, Marra G: Functional Analysis of hMLH1 Variants and HNPCC-Related Mutations Using a Human Expression System. Gastroenterology 122: 211–219, 2002.

    Article  PubMed  CAS  Google Scholar 

  512. Deng G, Chen A, Pong E, Kim YS: Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene 20: 7120–7127, 2001.

    Article  PubMed  CAS  Google Scholar 

  513. Muller-Koch Y, Kopp R, Lohse P, Baretton G, Stoetzer A, Aust D, Daum J, Kerker B, Gross M, Dietmeier W, Holinski-Feder E: Sixteen rare sequence variants of the hMLH1 and hMSH2 genes found in a cohort of 254 suspected HNPCC (hereditary nonpolyposis colorectal cancer) patients: mutations or polymorphisms? Eur J Med Res 6: 473–482, 2001.

    PubMed  CAS  Google Scholar 

  514. Shin KH, Shin JH, Kim JH, Park JG: Mutational Analysis of Promoters of Mismatch Repair Genes hMSH2 and hMLH1 in Hereditary Nonpolyposis Colorectal Cancer and Early Onset Colorectal Cancer Patients: Identification of Three Novel Germ-line Mutations in Promoter of the hMSH2 Gene. Cancer Res 62: 38–42, 2002.

    PubMed  Google Scholar 

  515. Hussein MR, Roggero E, Sudilovsky EC, Tuthill RJ, Wood GS, Sudilovsky O: Alterations of mismatch repair protein expression in benign melanocytic nevi, melanocytic dysplastic nevi, and cutaneous malignant melanomas. Am J Dermatopathol 23: 308–314, 2001.

    Article  PubMed  CAS  Google Scholar 

  516. Yeh CC, Lee C, Dahiya R: DNA mismatch repair enzyme activity and gene expression in prostate cancer. Biochem Biophys Res Commun 285: 409–413, 2001.

    Article  PubMed  CAS  Google Scholar 

  517. Chung TK, Cheung TH, Wang VW, Yu MY, Wong YF: Microsatellite instability, expression of hMSH2 and hMLH1 and HPV infection in cervical cancer and their clinico-pathological association. Gynecol Obstet Invest 52: 98–103, 2001.

    Article  PubMed  CAS  Google Scholar 

  518. Peiro G, Diebold J, Mayr D, Baretton GB, Kimmig R, Schmidt M, Lohrs U: Prognostic relevance of hMLH1, hMSH2, and BAX protein expression in endometrial carcinoma. Mod Pathol 14: 777–783, 2001.

    PubMed  CAS  Google Scholar 

  519. Aubry MC, Halling KC, Myers JL, Tazelaar HD, Yang P, Thibodeau SN: DNA mismatch repair genes hMLH1, hMSH2, and hMSH6 are not inactivated in bronchioloalveolar carcinomas of the lung. Cancer 92: 2898–2901, 2001.

    PubMed  CAS  Google Scholar 

  520. Wang L, Bani-Hani A, Montoya DP, Roche PC, Thibodeau SN, Burgart LJ, Roberts LR: hMLH1 and hMSH2 expression in human hepatocellular carcinoma. Int J Oncol 19: 567–570, 2001.

    PubMed  CAS  Google Scholar 

  521. Derradji H, Baatout S: Apoptosis: a mechanism of cell suicide. In Vivo 17: 185–192, 2003.

    PubMed  CAS  Google Scholar 

  522. Xerri L, Devilard E, Ayello C, Brousset P, Reed JC, Emile JF, Hassoun J, Parmentier S, Birg F: Cysteine protease CPP32, but not Ich1-L, is expressed in germinal center B cells and their neoplastic counterparts. Hum Pathol 28: 912–921, 1997.

    Article  PubMed  CAS  Google Scholar 

  523. Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, Tomaselli KJ: In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 5: 1004–1016, 1998.

    Article  PubMed  CAS  Google Scholar 

  524. Kopper L: Apoptozis es a daganatok. Magyar Onkologia 47: 123–131, 2003.

    PubMed  Google Scholar 

  525. Ockner RK: Apoptosis and liver diseases: recent concepts of mechanism and significance. J Gastroenterol Hepatol 16: 248–260, 2001.

    Article  PubMed  CAS  Google Scholar 

  526. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972.

    PubMed  CAS  Google Scholar 

  527. Kuan CY, Roth KA, Flavell RA, Rakic P: Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23: 291–297, 2000.

    Article  PubMed  CAS  Google Scholar 

  528. Arends MJ, Wyllie AH: Apoptosis: Mechanisms and roles in pathology. Int Rev Exp Pathol 32: 223–254, 1991.

    PubMed  CAS  Google Scholar 

  529. Patel T, Gores GJ, Kaufmann SH: The role of proteases during apoptosis. FASEB J 10: 587–597, 1996.

    PubMed  CAS  Google Scholar 

  530. Ellis RE, Jacobson DM, Horvitz HR: Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129: 79–94, 1991.

    PubMed  CAS  Google Scholar 

  531. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans death gene ced-3 encodes a protein similar to mammalian interleukin-1 β-converting enzyme. Cell 75: 641–652, 1993.

    Article  PubMed  CAS  Google Scholar 

  532. Hengartner MO Horvitz HR: C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian protooncogene bcl-2. Cell 76: 665–676, 1994.

    Article  PubMed  CAS  Google Scholar 

  533. Wang S, El-Deiry WS: TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628–8633, 2003.

    PubMed  CAS  Google Scholar 

  534. Mischak R: Assessment of caspase activity: synthetic substrates and inhibitors. Bioconcepts, 9.2: 1–20, 2003.

    Google Scholar 

  535. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW: A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 272: 17907–17911, 1997.

    Article  PubMed  CAS  Google Scholar 

  536. Chang HY, Yang X: Proteases for cell suicide: Function and regulation of caspases. Mol Biol Rev 64: 821–846, 2000.

    CAS  Google Scholar 

  537. Earnshaw WC, Martins LM, Kaufmann SH: Mammalian caspases: structure, activation, substrates and functions during apoptosis. Ann Rev Biochem 68: 383–424, 1999.

    PubMed  CAS  Google Scholar 

  538. Hengartner MO: The biochemistry of apoptosis. Nature 407: 769–776, 2000.

    Article  Google Scholar 

  539. Kohler C, Orrenius S, Zhivotvsky B: Evaluation of caspase activity in apoptotic cells. J Immunol Methods 265: 97–110, 2002.

    PubMed  CAS  Google Scholar 

  540. Ravagnan L, Roumier T, Kroemer G: Mitochondria, the killer organelles and their weapons. J Cell Physiol 192: 131–137, 2002.

    Article  PubMed  CAS  Google Scholar 

  541. Liu X, Kim CN, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157, 1996.

    PubMed  CAS  Google Scholar 

  542. Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES, Newland AC: Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 22: 1589–1599, 2003.

    Article  PubMed  CAS  Google Scholar 

  543. Stennicke HR, Salvesen GS: Biochemical characteristics of caspases-3,-6,-7 and-8. J Biol Chem 272: 25719–25723, 1997.

    Article  PubMed  CAS  Google Scholar 

  544. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y: Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 16: 2271–2281, 1997.

    Article  PubMed  CAS  Google Scholar 

  545. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M: Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 187: 587–600, 1998.

    Article  PubMed  CAS  Google Scholar 

  546. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES: Generation of constitutively active recombinant caspases-3 and-6 by rearrangement of their subunits. J Biol Chem 273: 10107–10111, 1998.

    Article  PubMed  CAS  Google Scholar 

  547. Kang JJ, Schaber MD, Srinivasula SM, Alnemri ES, Litwack G, Hall DJ, Bjornsti MA: Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J Biol Chem 274: 3189–3198, 1999.

    PubMed  CAS  Google Scholar 

  548. Fernandes-Alnemri T, Litwack G, Alnemri ES: Mch 2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res 55: 2737–2742, 1995.

    PubMed  CAS  Google Scholar 

  549. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SH, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES: In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93: 7464–7469, 1996.

    Article  PubMed  CAS  Google Scholar 

  550. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ: Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8 and-10 in a caspase-9-dependent manner. J Cell Biol 144: 281–292, 1999.

    Article  PubMed  CAS  Google Scholar 

  551. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES: Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93: 14486–14491, 1996.

    Article  PubMed  CAS  Google Scholar 

  552. Peter ME, Kischkel FC, Scheuerpflug CG, Medema JP, Debatin KM, Krammer PH: Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. Eur J Immunol 27: 1207–1212, 1997.

    PubMed  CAS  Google Scholar 

  553. Perera LP, Waldmann TA: Activation of human monocytes induces differential resistance to apoptosis with rapid down regulation of caspase-8/FLICE. Proc Natl Acad Sci USA 95: 14308–14313, 1998.

    Article  PubMed  CAS  Google Scholar 

  554. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr: NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683, 1998.

    PubMed  CAS  Google Scholar 

  555. Skulachev VP: Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275–280, 1998.

    Article  PubMed  CAS  Google Scholar 

  556. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489, 1997.

    Article  PubMed  CAS  Google Scholar 

  557. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW: Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352, 1998.

    Article  PubMed  CAS  Google Scholar 

  558. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES: Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1: 949–957, 1998.

    Article  PubMed  CAS  Google Scholar 

  559. Nakagawara A, Nakamura Y, Ikeda H, Hiwasa T, Kuida K, Su MS, Zhao H, Cnaan A, Sakiyama S: High levels of expression and nuclear localization of interleukin-1 β converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res. 57: 4578–4584, 1997.

    PubMed  CAS  Google Scholar 

  560. Ray SK, Patel SJ, Welsh CT, Wilford GG, Hogan EL, Banik NL: Molecular evidence of apoptotic death in malignant brain tumors including glioblastoma multiforme: upregulation of calpain and caspase-3. J Neurosci Res 69: 197–206, 2002.

    Article  PubMed  CAS  Google Scholar 

  561. Trauth BC, Klas C, Peters AMJ, Matzku S, Moller P, Falk W, Debatin K-M, Krammer PH: Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305, 1989.

    PubMed  CAS  Google Scholar 

  562. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243, 1991.

    Article  PubMed  CAS  Google Scholar 

  563. Shi Y, Glynn JM, Guilbert LJ, Cotter TG, Bissonnette RP, Green DR: Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257: 212–214, 1992.

    PubMed  CAS  Google Scholar 

  564. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  565. Korsmeyer SJ: Bcl-2: a repressor of lymphocyte death. Immunol Today 13: 285–288, 1992.

    Article  PubMed  CAS  Google Scholar 

  566. Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937, 1993.

    PubMed  CAS  Google Scholar 

  567. Hoffman B, Liebermann DA: Molecular controls of apoptosis: differentiation/growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive and negative modulators. Oncogene 9: 1807–1812, 1994.

    PubMed  CAS  Google Scholar 

  568. Ehl S, Hoffmann-Rohrer U, Nagata S, Hengartner H, Zinkernagel R: Different susceptibility of cytotoxic T cells to CD95 (Fas/Apo-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol 156: 2357–2360, 1996.

    PubMed  CAS  Google Scholar 

  569. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Fas (APO-1, CD95) receptor expression and new options of immunotherapy in childhood medulloblastomas. Anticancer Res 19: 3293–3314, 1999.

    PubMed  CAS  Google Scholar 

  570. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Fas (APO-1, CD95) receptor expression in childhood astrocytomas. Is it a marker of the major apoptotic pathway or a signaling receptor for immune escape of neoplastic cells? In Vivo 13: 357–373, 1999.

    PubMed  CAS  Google Scholar 

  571. Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H: Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68: 421–427, 1992.

    PubMed  CAS  Google Scholar 

  572. Calderhead DM, Buhlmann JE, van den Eertwegh AJM, Claassen E, Noelle RJ, Fell HP: Cloning of mouse Ox40: a T cell activation marker that may mediate T-B cell interactions. J Immunol 151: 5261–5271, 1993.

    PubMed  CAS  Google Scholar 

  573. Smith CA, Farrah T, Goodwin RG: The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962, 1994.

    PubMed  CAS  Google Scholar 

  574. Nagata S: Fas and Fas ligand: a death factor and its receptor. Adv Immunol 57: 129–144, 1994.

    PubMed  CAS  Google Scholar 

  575. Ogasawara J, Suda T, Nagata S: Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody. J Exp Med 181: 485–491, 1995.

    Article  PubMed  CAS  Google Scholar 

  576. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH: Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178: 2231–2235, 1993.

    PubMed  CAS  Google Scholar 

  577. Yonehara S, Ishii A, Yonehara M: A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747–1756, 1989.

    Article  PubMed  CAS  Google Scholar 

  578. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S: Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809, 1993.

    Article  PubMed  CAS  Google Scholar 

  579. Suda T, Takahashi T, Golstein P, Nagata S: Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75: 1169–1178, 1993.

    Article  PubMed  CAS  Google Scholar 

  580. Suda T, Nagata S: Purification and characterization of the Fas ligand that induces apoptosis. J Exp Med 179: 873–878, 1994.

    Article  PubMed  CAS  Google Scholar 

  581. Nagata S, Golstein P: The Fas death factor. Science 267: 1449–1456, 1995.

    PubMed  CAS  Google Scholar 

  582. Schulze-Osthoff K: The Fas/APO-1 receptor and its deadly ligand. Trends Cell Biol 4: 421–426, 1995.

    Google Scholar 

  583. Cohen PL, Eisenberg RA: Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 9: 243–269, 1991.

    PubMed  CAS  Google Scholar 

  584. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317, 1992.

    Article  PubMed  CAS  Google Scholar 

  585. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76: 969–976, 1994.

    Article  PubMed  CAS  Google Scholar 

  586. Zhou T, Bluethmann H, Eldridge J, Berry K, Mountz JD: Abnormal thymocyte development and production of autoreactive T cells in TCR transgenic autoimmune mice. J Immunol 147: 466–474, 1991.

    PubMed  CAS  Google Scholar 

  587. Zhou T, Mountz JD, Edwards III CK, Berry K, Bluethmann H: Defective maintenance of T cell tolerance to a superantigen in MRL-lpr/lpr mouse. J Exp Med 176: 1063–1072, 1992.

    Article  PubMed  CAS  Google Scholar 

  588. Zhou T, Bluethmann H, Eldridge J, Berry K, Mountz JD: Origin of CD4-CD8-B220+ T cells in MRL-lpr/lpr mice. Clues from a T cell receptor β transgenic mouse. J Immunol 150: 3651–3667, 1993.

    PubMed  CAS  Google Scholar 

  589. Owen-Schaub LB, Yonehara S, Crump WL III, Grimm E: DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol 140: 197–205, 1992.

    PubMed  CAS  Google Scholar 

  590. Klas C, Debatin K-M, Jonker RR, Krammer PH: Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5: 625–630, 1993.

    PubMed  CAS  Google Scholar 

  591. Su X, Zhou T, Wu J, Jope R, Mountz JD: Dephosphorylation of a 65kD protein associated with signaling for Fas-mediated apoptosis. (Abstract) FASEB J 8: A218, 1994.

    Google Scholar 

  592. Mountz JD, Zhou T, Wu J, Wang W, Su X, Cheng J: Regulation of apoptosis in immune cells. J Clin Immunol 15: 1–16, 1995.

    Article  PubMed  CAS  Google Scholar 

  593. Tachibana O, Nakazawa H, Lampe J, Watanabe K, Kleihues P, Ohgaki H: Expression of Fas/APO-1 during the progression of astrocytomas. Cancer Res 55: 5528–5530, 1995.

    PubMed  CAS  Google Scholar 

  594. Tachibana O, Lampe J, Kleihues P, Ohgaki H: Preferential expression of Fas/APO1 (CD95) and apoptotic cell death in perinecrotic cells of glioblastoma multiforme. Acta Neuropathol 92: 431–434, 1996.

    Article  PubMed  CAS  Google Scholar 

  595. Dietrich P-Y, Walker PR, Saas P, de Tribolet N: Immunobiology of gliomas: new perspectives for therapy. In: Challenges and opportunities in pediatric oncology (Holmes FF, Kepes JJ, Vats TS, Schuler D, Nyary I, eds). New York, Ann NY Acad Sci 824:124–140, 1997.

    Google Scholar 

  596. Cohen JJ: Apoptosis. Immunol Today 14: 126–130, 1993.

    Article  PubMed  CAS  Google Scholar 

  597. Strater J, Wellisch I, Riedl S, Walczak H, Koretz K, Tandara A, Krammer PH, Moller P: CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113: 160–167, 1997.

    Article  PubMed  CAS  Google Scholar 

  598. Reyher von U, Strater J, Kittstein W, Gschwendt M, Krammer PH, Moller P: Colon carcinoma cells use different mechanisms to escape CD95-mediated apoptosis. Cancer Res 58: 526–534, 1998.

    Google Scholar 

  599. Weller M, Schuster M, Pietsch T, Schabet M: CD95 ligand-induced apoptosis of human medulloblastoma cells. Cancer Lett 128: 121–126, 1998.

    Article  PubMed  CAS  Google Scholar 

  600. Schiffer D, Cavalla P, Chio A, Giordana MT, Marino S, Mauro A, Migheli A: Tumor cell proliferation and apoptosis in medulloblastoma. Acta Neuropathol 87: 362–370, 1994.

    Article  PubMed  CAS  Google Scholar 

  601. Schubert TE, Cervos-Navarro J: The histopathological and clinical relevance of apoptotic cell death in medulloblastomas. J Neuropathol Exp Neurol 57: 10–15, 1998.

    PubMed  CAS  Google Scholar 

  602. Reed JC: Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34(4 Suppl 5): 9–19, 1997.

    PubMed  CAS  Google Scholar 

  603. Basu A, Haldar S: Microtubule-damaging drugs triggered bcl2 phosphorylation-requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein. Int J Oncol 13: 659–664, 1998.

    PubMed  CAS  Google Scholar 

  604. Hockenbery DM: The bcl-2 oncogene and apoptosis. Semin Immunol 4: 413–420, 1992.

    PubMed  CAS  Google Scholar 

  605. Vile GF, Tyrrell RM: Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem 268: 14678–14681, 1993.

    PubMed  CAS  Google Scholar 

  606. Haldar S, Jena N, Croce CM: Inactivation of bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92: 4507–4511, 1995.

    PubMed  CAS  Google Scholar 

  607. Haldar S, Chintapalli J, Croce CM: Taxol-induced bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56: 1253–1255, 1996.

    PubMed  CAS  Google Scholar 

  608. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM: Taxol-induced apoptosis and phosphorylation of bcl-2 protein involves c-Raf-1 signal transduction pathway. Cancer Res 56: 1851–1854, 1996.

    PubMed  CAS  Google Scholar 

  609. Vaux DL, Cory S, Adams JM: Bcl-2 gene promotes hematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 355: 440–442, 1988.

    Google Scholar 

  610. Hockenbery DM, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336, 1990.

    Article  PubMed  CAS  Google Scholar 

  611. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ: Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251, 1993.

    Article  PubMed  CAS  Google Scholar 

  612. Kaufmann SH: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 49: 5870–5878, 1989.

    PubMed  CAS  Google Scholar 

  613. Martin SJ, Lennon SV, Bonham AM, Cotter TG: Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol 145: 1859–1867, 1990.

    PubMed  CAS  Google Scholar 

  614. Barry MA, Behnke CA, Eastman A: Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40: 2353–2362, 1990.

    Article  PubMed  CAS  Google Scholar 

  615. Perotti M, Toddei F, Mirabelli F, Vairetti M, Bellomo G, McConkey DJ, Orrenius S: Calcium-dependent DNA fragmentation in human synovial cells exposed to cold shock. FEBS Lett 259: 331–334, 1990.

    Article  PubMed  CAS  Google Scholar 

  616. Kruman II, Matylevich NP, Beletsky IP, Afanasyev VN, Umansky SR: Apoptosis of murine BW 5147 thymoma cells induced by dexamethasone and gamma-irradiation. J Cell Physiol 148: 267–273, 1991.

    Article  PubMed  CAS  Google Scholar 

  617. Martin SJ, Cotter TG: Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. Int J Radiat Biol 59: 1001–1016, 1991.

    PubMed  CAS  Google Scholar 

  618. Del Bino G, Lassota P, Darzynkiewicz Z: The S-phase cytotoxicity of camptothecin. Exp Cell Res 193: 27–35, 1991.

    PubMed  Google Scholar 

  619. Del Bino G, Darzynkiewicz Z: Camptothecin, teniposide, or 4′-(9-acridinylamino)-3-methanesulfon-m-anisidide, but not mitoxantrone or doxorubicin, induces degradation of nuclear DNA in the S phase of HL-60 cells. Cancer Res 51: 1165–1169, 1991.

    PubMed  Google Scholar 

  620. Bertrand R, Sarang M, Jenkin J, Kerrigan D, Pommier Y: Differential induction of secondary DNA fragmentation by topoisomerase II inhibitors in human tumor cell lines with amplified c-myc expression. Cancer Res 51: 6280–6285, 1991.

    PubMed  CAS  Google Scholar 

  621. O’Connor PM, Wassermann K, Sarang M, Magrath I, Bohr VA, Kohn KW: Relationship between DNA cross-links, cell cycle, and apoptosis in Burkitt’s lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res 51: 6550–6557, 1991.

    PubMed  CAS  Google Scholar 

  622. Hara A, Hirose Y, Yoshimi N, Tanaka T, Mori H: Expression of Bax and bcl-2 proteins, regulators of programmed cell death, in human brain tumors. Neurol Res 19: 623–628, 1997.

    PubMed  CAS  Google Scholar 

  623. Yew DT, Wang HH, Zheng DR: Apoptosis in astrocytomas with different grades of malignancy. Acta Neurochir 140: 341–347, 1998.

    Article  CAS  Google Scholar 

  624. Schiffer D, Cavalla P, Migheli A, Chio A, Giordana MT, Marino S, Attanasis A: Apoptosis and cell proliferation in human neuroepithelial tumours. Neurosci Lett 195: 81–84, 1995.

    Article  PubMed  CAS  Google Scholar 

  625. Schiffer D, Cavalla P, Migheli A, Giordana MT, Chiado-Piat L: Bcl-2 distribution in neuroepithelial tumours: an immunohistochemical study. J Neurooncol 27: 101–109, 1996.

    Article  PubMed  CAS  Google Scholar 

  626. Gratas C, Tohma Y, Van Meir EG, Klein M, Tenan M, Ishii N, Tachibana O, Kleihues P, Ohgaki H: Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol 7: 863–869, 1997.

    PubMed  CAS  Google Scholar 

  627. Tohma Y, Gratas C, Van Meir EG, Desbaillets I, Tenan M, Tachibana O, Kleihues P, Ohgaki H: Necrogenesis and Fas/APO-1 (CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 57: 239–245, 1998.

    PubMed  CAS  Google Scholar 

  628. Krajewski S, Krajewska M, Ehrmann J, Sikorska M, Lach B, Chatten J, Reed JC: Immunohistochemical analysis of Bcl-2, Bcl-X, Mcl-1, and Bax in tumors of central and peripheral nervous system origin. Am J Pathol 150: 805–814, 1997.

    PubMed  CAS  Google Scholar 

  629. Altieri DC, Marchisio PC, Marchisio C: Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab Invest 79: 1327–1333, 1999.

    PubMed  CAS  Google Scholar 

  630. Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3: 917–921, 1997.

    Article  PubMed  CAS  Google Scholar 

  631. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC: Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584, 1998.

    PubMed  CAS  Google Scholar 

  632. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M: Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257, 2002.

    Article  PubMed  CAS  Google Scholar 

  633. Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, Villa A, Marchisio PC, Altieri DC: Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1: 461–466, 1999.

    Article  PubMed  CAS  Google Scholar 

  634. Deveraux QL, Reed JC: IAP family proteins—suppressors of apoptosis. Genes Dev 13: 239–252, 1999.

    PubMed  CAS  Google Scholar 

  635. Chantalat L, Skoufias DA, Kleman JP, Jung B, Dideberg O, Margolis RL: Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual α-helical extensions. Mol Cell 6: 183–189, 2000.

    Article  PubMed  CAS  Google Scholar 

  636. Miller LK: An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 9: 323–328, 1999.

    Article  PubMed  CAS  Google Scholar 

  637. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng SC, Fesik SW: NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401: 818–822, 1999.

    PubMed  CAS  Google Scholar 

  638. Shi Y: Survivin structure: crystal unclear. Nat Struct Biol 7: 620–623, 2000.

    Article  PubMed  CAS  Google Scholar 

  639. O’Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, Marchisio PC, Altieri DC: Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci USA 97: 13103–13107, 2000.

    PubMed  CAS  Google Scholar 

  640. Ambrosini G, Adida C, Sirugo G, Altieri DC: Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273: 11177–11182, 1998.

    Article  PubMed  CAS  Google Scholar 

  641. Conway EM, Pollefeyt S, Steiner-Mosonyi M, Luo W, Devriese A, Lupu F, Bono F, Leducq N, Dol F, Schaeffer P, Collen D, Herbert JM: Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology 123: 619–631, 2002.

    Article  PubMed  CAS  Google Scholar 

  642. Suzuki A, Hayashida M, Ito T, Kawano H, Nakano T, Miura M, Akahane K, Shiraki K: Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene 19: 3225–3234, 2000.

    PubMed  CAS  Google Scholar 

  643. Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7. Biochemistry 40: 1117–1123, 2001.

    PubMed  CAS  Google Scholar 

  644. Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T: Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci USA 96: 1457–1462, 1999.

    PubMed  CAS  Google Scholar 

  645. Katoh M, Wilmotte R, Belkouch MC, de Tribolet N, Pizzolato G, Dietrich PY: Survivin in brain tumors: an attractive target for immunotherapy. J Neurooncol 64: 71–76, 2003.

    Article  PubMed  Google Scholar 

  646. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K: Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97: 1077–1083, 2003.

    Article  PubMed  Google Scholar 

  647. Tsujimoto Y, Cossman J, Jaffe E, Croce CM: Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443, 1985.

    PubMed  CAS  Google Scholar 

  648. Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC: Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152: 43–49, 1998.

    PubMed  CAS  Google Scholar 

  649. Lu CD, Altieri DC, Tanigawa N: Expression of a novel anti-apoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res 58: 1808–1812, 1998.

    PubMed  CAS  Google Scholar 

  650. Rabbani SA: Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12: 135–142, 1998.

    PubMed  CAS  Google Scholar 

  651. Czubayko F, Liadet-Coopman EDE, Aigner A, Tuveson AT, Berchem GJ, Wellstein A: A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nature Med 3: 1137–1140, 1997.

    PubMed  CAS  Google Scholar 

  652. Rak J, Kerbel RS: bFGF and tumor angiogenesis—back in the limelight? Nature Med 3: 1083–1084, 1997.

    PubMed  CAS  Google Scholar 

  653. Czubayko F, Smith RV, Chung HC, Wellstein A: Tumor growth and angiogenesis induced by a secreted binding protein for fibroblast growth factors. J Biol Chem 269: 28243–28248, 1994.

    PubMed  CAS  Google Scholar 

  654. Morrison RS, Giordano S, Yamaguchi F, Hendrickson S, Berger MS, Palczewski K: Basic fibroblast growth factor expression is required for clonogenic growth of human glioma cells. J Neurosci Res 34: 502–509, 1993.

    Article  PubMed  CAS  Google Scholar 

  655. Redekop GJ, Naus CC: Transfection of bFGF sense and antisense cDNA resulting in modification of malignant glioma growth. J Neurosurg 82: 83–90, 1995.

    PubMed  CAS  Google Scholar 

  656. Stiles JD, Ostrow PT, Balos LL, Greenberg SJ, Plunkett R, Grand W, Heffner RR Jr: Correlation of endothelin-1 and transforming growth factor β 1 with malignancy and vascularity in human gliomas. J Neuropathol Exp Neurol 56: 435–439, 1997.

    PubMed  CAS  Google Scholar 

  657. Gougos A, Letarte M: Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265: 8361–8364, 1990.

    PubMed  CAS  Google Scholar 

  658. Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J: Structure and expression of the membrane proteoglycan β-glycan, a component of the TGF-β receptor system. Cell 67: 785–795, 1991.

    PubMed  CAS  Google Scholar 

  659. Altomonte M, Montagner R, Fonsatti E, Colizzi F, Cattarossi I, Brasoveanu LI, Nicotra MR, Cattelan A, Natali PG, Maio M: Expression and structural features of endoglin (CD105), a transforming growth factor β1 and β3 binding protein, in human melanoma. Br J Cancer 74: 1586–1591, 1996.

    PubMed  CAS  Google Scholar 

  660. Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdzar AF, King SW, Letarte M, Vitetta ES, Thorpe PE: Up-regulation of endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clin Cancer Res 1: 1623–1634, 1995.

    PubMed  CAS  Google Scholar 

  661. Kumar P, Wang JM, Bernabeu C: CD 105 and angiogenesis. J Pathol 178: 363–366, 1996.

    Article  PubMed  CAS  Google Scholar 

  662. Fernandez-Ruiz E, St-Jacques S, Bellon T, Letarte M, Bernabeu C: Assignment of the human endoglin gene (END) to 9q34 qter. Cytogenet Cell Genet 64: 204–207, 1993.

    PubMed  CAS  Google Scholar 

  663. Wang JM, Kumar S, van Agthoven A, Kumar P, Pye D, Hunter RD: Irradiation induces up-regulation of E9 protein (CD105) in human vascular endothelial cells. Int J Cancer 62: 791–796, 1995.

    PubMed  CAS  Google Scholar 

  664. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K: Enhanced expression of transforming growth factor-β and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62: 386–392, 1995.

    PubMed  CAS  Google Scholar 

  665. Henriksen R, Gobl A, Wilander E, Oberg K, Miyazono K, Funa K: Expression and prognostic significance of TGF-β isotypes, latent TGF-β 1 binding protein, TGF-β type I and type II receptors, and endoglin in normal ovary and ovarian neoplasms. Lab Invest 73: 213–220, 1995.

    PubMed  CAS  Google Scholar 

  666. Szekanecz Z, Haines GK, Harlow LA, Shah MR, Fong TW, Fu R, Lin SJ, Rayan G, Koch AE: Increased synovial expression of transforming growth factor (TGF)β receptor endoglin and TGF-β1 in rheumatoid arthritis: possible interactions in the pathogenesis of the disease. Clin Immunol Immunopathol 76: 187–194, 1995.

    PubMed  CAS  Google Scholar 

  667. Zhang H, Shaw AR, Mak A, Letarte M: Endoglin is a component of the transforming growth factor (TGF)β receptor complex of human pre-B leukemic cells. J Immunol 156: 564–573, 1996.

    PubMed  CAS  Google Scholar 

  668. Griffioen AW, Damen CA, Blijham GH, Groenewegen G: Endoglin/CD 105 may not be an optimal tumor endothelial treatment target. Breast Cancer Res Treat 39: 239–242, 1996.

    Article  PubMed  CAS  Google Scholar 

  669. Shovlin CL, Scott J: Inherited diseases of the vasculature. Annu Rev Physiol 58: 483–507, 1996.

    Article  PubMed  CAS  Google Scholar 

  670. Pichuantes S, Vera S, Bourdeau A, Pece N, Kumar S, Wayner EA, Letarte M: Mapping epitopes to distinct regions of the extracellular domain of endoglin using bacterially expressed recombinant fragments. Tissue Antigens 50: 265–276, 1997.

    PubMed  CAS  Google Scholar 

  671. Zagzag D: Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 146: 293–309, 1995.

    PubMed  CAS  Google Scholar 

  672. Bouck N: Angiogenesis: a mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis. Cancer Treat Res 63: 359–371, 1992.

    PubMed  CAS  Google Scholar 

  673. Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S, Nose T: Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res 56: 2185–2190, 1996.

    PubMed  CAS  Google Scholar 

  674. Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP: Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 29: 910–914, 1998.

    Article  PubMed  CAS  Google Scholar 

  675. Sharkey AM, Charnock-Jones DS, Boocock CA, Brown KD, Smith SK: Expression of mRNA for vascular endothelial growth factor in human placenta. J Reprod Fertil 99: 609–615, 1993.

    PubMed  CAS  Google Scholar 

  676. Aase K, Lymboussaki A, Kaipainen A, Olofsson B, Alitalo K, Eriksson U: Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev Dyn 215: 12–25, 1999.

    Article  PubMed  CAS  Google Scholar 

  677. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189–1193, 1995.

    PubMed  CAS  Google Scholar 

  678. Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Clark WC, Robertson JT, Ali IU, Oldfield EH: Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91: 153–159, 1993.

    PubMed  CAS  Google Scholar 

  679. Morii K, Tanaka R, Washiyama K, Kumanishi T, Kuwano R: Expression of vascular endothelial growth factor in capillary hemangioblastoma. Biochem Biophys Res Commun 194: 749–755, 1993.

    Article  PubMed  CAS  Google Scholar 

  680. Wizigmann-Voos S, Breier G, Risau W, Plate KH: Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res 55: 1358–1364, 1995.

    PubMed  CAS  Google Scholar 

  681. Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59: 520–529, 1994.

    PubMed  CAS  Google Scholar 

  682. Godard S, Getz G, Delorenzi M, Farmer P, Kobayashi H, Desbaillets I, Nozaki M, Diserens AC, Hamou MF, Dietrich PY, Regli L, Janzer RC, Bucher P, Stupp R, de Tribolet N, Domany E, Hegi ME: Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63: 6613–6625, 2003.

    PubMed  CAS  Google Scholar 

  683. Breier G, Albrecht U, Sterrer S, Risau W: Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114: 521–532, 1992.

    PubMed  CAS  Google Scholar 

  684. Risau W: Embryonic angiogenesis factors. Pharmacol Ther 51: 371–376, 1991.

    Article  PubMed  CAS  Google Scholar 

  685. Risau W: Molecular biology of blood-brain barrier ontogenesis and function. Acta Neurochir (Wien) [Suppl] 60: 109–112, 1994.

    CAS  Google Scholar 

  686. Shim JW, Koh YC, Ahn HK, Park YE, Hwang DY, Chi JG: Expression of bFGF and VEGF in brain astrocytoma. J Korean Med Sci 11: 149–157, 1996.

    PubMed  CAS  Google Scholar 

  687. Melnyk O, Shuman MA, Kim KJ: Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res 56: 921–924, 1996.

    PubMed  CAS  Google Scholar 

  688. Machein MR, Kullmer J, Fiebich BL, Plate KH, Warnke PC: Vascular endothelial growth factor expression, vascular volume, and, capillary permeability in human brain tumors. Neurosurgery 44: 732–740, 1999. discussion 740–741.

    PubMed  CAS  Google Scholar 

  689. Liotta LA, Abe S, Robey PG, Martin GR: Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci USA 76: 2268–2272, 1979.

    PubMed  CAS  Google Scholar 

  690. Seltzer JL, Adams SA, Grant GA, Eisen AZ: Purification and properties of a gelatin-specific neutral protease from human skin. J Biol Chem 256: 4662–4668, 1981.

    PubMed  CAS  Google Scholar 

  691. Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE: Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin. J Biol Chem 264: 3822–3826, 1989.

    PubMed  CAS  Google Scholar 

  692. Seltzer JL, Akers KT, Weingarten H, Grant GA, McCourt DW, Eisen AZ: Cleavage specificity of human skin type IV collagenase (gelatinase). Identification of cleavage sites in type I gelatin, with confirmation using synthetic peptides. J Biol Chem 265: 20409–20413, 1990.

    PubMed  CAS  Google Scholar 

  693. Gadher SJ, Schmid TM, Heck LW, Woolley DE: Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. Matrix 9: 109–115, 1989.

    PubMed  CAS  Google Scholar 

  694. Welgus HG, Fliszar CJ, Seltzer JL, Schmid TM, Jeffrey JJ: Differential susceptibility of type X collagen to cleavage by two mammalian interstitial collagenases and 72-kDa type IV collagenase. J Biol Chem 265: 13521–13527, 1990.

    PubMed  CAS  Google Scholar 

  695. Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG: Human 92-and 72-kilodalton type IV collagenases are elastases. J Biol Chem 266: 7870–7875, 1991.

    PubMed  CAS  Google Scholar 

  696. Hibbs MS, Hoidal JR, Kang AH: Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. J Clin Invest 80: 1644–1650, 1987.

    PubMed  CAS  Google Scholar 

  697. Niyibizi C, Chan R, Wu JJ, Eyre D: A 92 kDa gelatinase (MMP-9) cleavage site in native type V collagen. Biochem Biophys Res Commun 202: 328–333, 1994.

    Article  PubMed  CAS  Google Scholar 

  698. Pourmotabbed T: Relation between substrate specificity and domain structure of 92-kDa type IV collagenase. Ann NY Acad Sci 732: 372–374, 1994.

    PubMed  CAS  Google Scholar 

  699. Pourmotabbed T, Solomon TL, Hasty KA, Mainardi CL: Characteristics of 92 kDa type IV collagenase/gelatinase produced by granulocytic leukemia cells: structure, expression of cDNA in E. coli and enzymic properties. Biochim Biophys Acta 1204: 97–107, 1994.

    PubMed  CAS  Google Scholar 

  700. Fosang AJ, Neame PJ, Last K, Hardingham TE, Murphy G, Hamilton JA: The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem 267: 19470–19474, 1992.

    PubMed  CAS  Google Scholar 

  701. Nguyen Q, Murphy G, Hughes CE, Mort JS, Roughley PJ: Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem J 295: 595–598, 1993.

    PubMed  CAS  Google Scholar 

  702. Okada Y, Nagase H, Harris ED Jr: A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem 261: 14245–14255, 1986.

    PubMed  CAS  Google Scholar 

  703. Muller D, Quantin B, Gesnel MC, Millon-Collard R, Abecassis J, Breathnach R: The collagenase gene family in humans consists of at least four members. Biochem J 253: 187–192, 1988.

    PubMed  CAS  Google Scholar 

  704. Flannery CR, Lark MW, Sandy JD: Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 267: 1008–1014, 1992.

    PubMed  CAS  Google Scholar 

  705. Nguyen Q, Murphy G, Roughley PJ, Mort JS: Degradation of proteoglycan aggregate by a cartilage mettaloproteinase. Evidence for the involvement of stromelysin in the degradation of link protein heterogeneity in situ. Biochem J 259: 61–67, 1989.

    PubMed  CAS  Google Scholar 

  706. Wu JJ, Lark MW, Chun LE, Eyre DR: Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem 266: 5625–5628, 1991.

    PubMed  CAS  Google Scholar 

  707. Mott JD, Khalifah RG, Nagase H, Shield CF 3rd, Hudson JK, Hudson BG: Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52: 1302–1312, 1997.

    PubMed  CAS  Google Scholar 

  708. Wilhelm SM, Shao ZH, Housley TJ, Seperack PK, Baumann AP, Gunja-Smith Z, Woessner JF jr: Matrix metalloproteinase-3 (stromelysin-1). Identification as the cartilage acid metalloprotease and effect of pH on catalytic properties and calcium affinity. J Biol Chem 268: 21906–21913, 1993.

    PubMed  CAS  Google Scholar 

  709. Enghild JJ, Salvesen G, Brew K, Nagase H: Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human a α2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J Biol Chem 264: 8779–8785, 1989.

    PubMed  CAS  Google Scholar 

  710. Mast AE, Enghild JJ, Nagase H, Suzuki K, Pizzo SV, Salvesen G: Kinetics and physiologic relevance of the inactivation of α 1-proteinase inhibitor, α 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase),-2 (72-kDa gelatinase/type IV collagenase), and-3 (stromelysin). J Biol Chem 266: 15810–15816, 1991.

    PubMed  CAS  Google Scholar 

  711. Harrison R, Teahan J, Stein R: A semicontinuous, high-performance liquid chromatography-based assay for stromelysin. Annals Biochem 180: 100–113, 1989.

    Google Scholar 

  712. Fowlkes JL, Enghild JJ, Susuki K, Nagase H: Matrix metalloproteinasees degrade insulin-like growth factor-binding protein-1 in dermal fibroblast cultures. J Biol Chem 269: 25742–25746, 1994.

    PubMed  CAS  Google Scholar 

  713. Mayer U, Mann K, Timpl R, Murphy G: Sites of nidogen cleavage by proteases involved in tissue homeostasis and remodeling. Eur J Biochem 217: 877–884, 1993.

    Article  PubMed  CAS  Google Scholar 

  714. Sasaki T, Gohring W, Mann K, Maurer P, Hohenester E, Knauper V, Murphy G, Timpl R: Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272: 9237–9243, 1997.

    PubMed  CAS  Google Scholar 

  715. Sasaki T, Mann K, Murphy G, Chu ML, Timpl: Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue proteases. Eur Biochem 240: 427–434, 1996.

    CAS  Google Scholar 

  716. Bini A, Itoh Y, Kudryk BJ, Nagase H: Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): Hydrolysis of the γGly404-Ala405 peptide bond. Biochem 35: 13056–13063, 1996.

    CAS  Google Scholar 

  717. Imai K, Shikata H, Okada Y: Degradation of vitronectin by matrix metalloproteinases-1,-2,-3,-7, and-9. FEBS Lett 369: 249–251, 1995.

    Article  PubMed  CAS  Google Scholar 

  718. Knauper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H: Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem J 295: 581–586, 1993.

    PubMed  Google Scholar 

  719. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G: Biochemical characterization of human collagenase-3. J Biol Chem 235: 187–191, 1996.

    CAS  Google Scholar 

  720. Nagase H, Enghild JJ, Suzuki K, Salvesen G: Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and 4-aminophenyl) mercuric acetate. Biochemistry. 29: 5783–5789, 1990.

    Article  PubMed  CAS  Google Scholar 

  721. Ogata Y, Enghild JJ, Nagase H: Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 267: 3581–3584, 1992.

    PubMed  CAS  Google Scholar 

  722. Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H: Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29: 10261–10270, 1990.

    PubMed  CAS  Google Scholar 

  723. Freije JM, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C: Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 269: 16766–16773, 1994.

    PubMed  CAS  Google Scholar 

  724. Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G: Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271: 17124–17131, 1996.

    PubMed  CAS  Google Scholar 

  725. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR: Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99: 1534–1545, 1997.

    PubMed  CAS  Google Scholar 

  726. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE: Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97: 761–768, 1996.

    PubMed  CAS  Google Scholar 

  727. Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 153: 429–437, 1998.

    PubMed  CAS  Google Scholar 

  728. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Matrix metalloproteinase expression in childhood medulloblastomas/primitive neuroectodermal tumors. In Vivo 14: 667–673, 2000.

    PubMed  CAS  Google Scholar 

  729. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Matrix metalloproteinase expression in childhood astrocytomas. Anticancer Res 20: 3287–3292, 2000.

    PubMed  CAS  Google Scholar 

  730. Rooprai HK, McCormick D: Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17: 4151–4162, 1997.

    PubMed  CAS  Google Scholar 

  731. Rooprai HK, Van Meter T, Rucklidge GJ, Hudson L, Everall IP, Pilkington GJ: Comparative analysis of matrix metalloproteinases by immunocytochemistry, immunohistochemistry and zymography in human primary brain tumours. Int J Oncol 13: 1153–1157, 1998.

    PubMed  CAS  Google Scholar 

  732. Nakagawa T, Kubota T, Kabuto M, Sato K, Kawano H, Hayakawa T, Okada Y: Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg 81: 69–77, 1994.

    PubMed  CAS  Google Scholar 

  733. Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama J: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83: 298–307, 1995.

    PubMed  CAS  Google Scholar 

  734. Nakagawa T, Kubota T, Kabuto M, Fujimoto N, Okada Y: Secretion of matrix metalloproteinase-2 (72 kD gelatinase/type IV collagenase=gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix. J Neurooncol 28: 13–24, 1996.

    Article  PubMed  CAS  Google Scholar 

  735. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS: Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 14: 35–42, 1996.

    PubMed  CAS  Google Scholar 

  736. Rao JS, Yamamoto M, Mohaman S, Gokaslan ZL, Fuller GN, Stetler-Stevenson WG, Rao VH, Liotta LA, Nicolson GL, Sawaya RE: Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14: 12–18, 1996.

    PubMed  CAS  Google Scholar 

  737. Vince GH, Wagner S, Pietsch T, Klein R, Goldbrunner RH, Roosen K, Tonn JC: Heterogeneous regional expression patterns of matrix metalloproteinases in human malignant gliomas. Int J Dev Neurosci 17: 437–445, 1999.

    PubMed  CAS  Google Scholar 

  738. Janckila AJ, Yam LT, Li C-Y: Immunoalkaline phosphatase cytochemistry. Amer J Clin Pathol 84: 476–480, 1985.

    CAS  Google Scholar 

  739. Zeltzer PM, Bodey B, Marlin A, Kemshead J: Immunophenotype profile of childhood medulloblastomas and supratentorial primitive neuroectodermal tumors using 16 monoclonal antibodies. Cancer 66: 273–283, 1990.

    PubMed  CAS  Google Scholar 

  740. Yam LT, Janckila AJ, Epremian BE, Li C-Y: Diagnostic significance of levamisole-resistant alkaline phosphatase in cytochemistry and immunocytochemistry. Amer J Clin Pathol 91: 31–36, 1989.

    CAS  Google Scholar 

  741. Strasburger CJ, Amir-Zaltsman Y, Kohen F: The avidin-biotin reaction as an universal amplification system in immunoassays. Prog Clin Biol Res 285: 79–100, 1988.

    PubMed  CAS  Google Scholar 

  742. Wilchek M, Bayer EA: Introduction to avidin-biotin technology. Methods Enzymol 184: 5–13, 1990.

    PubMed  CAS  Google Scholar 

  743. Duhamel RC, Whitehead JS: Prevention of nonspecific binding of avidin. Methods Enzymol 184: 201–207, 1990.

    PubMed  CAS  Google Scholar 

  744. Diamandis EP, Christopoulos TK: The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37: 625–636, 1991.

    PubMed  CAS  Google Scholar 

  745. Bodey B: Cancer-Testis antigens: promising targets for antigen directed anti-neoplastic immunotherapy. EOBT 2: 577–584, 2002.

    CAS  Google Scholar 

  746. Bodey B: Genetically engineered antibodies for direct anti-neoplastic treatment and neoplastic cells directed delivery of various therapeutic agents. EOBT 1: 603–617, 2001.

    CAS  Google Scholar 

  747. Ma Z, Khatlani TS, Li L Sasaki K, Okuda M, Inokuma H, Onishi T: Molecular cloning and expression analysis of feline melanoma antigen (MAGE) obtained from a lymphoma cell line. Vet Immunol Immunopathol 83: 241–252, 2001.

    PubMed  CAS  Google Scholar 

  748. Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, Nguyen DM, Schrump DS: Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg 71: 295–301; discussion 301–302, 2001.

    Google Scholar 

  749. Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S: An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61: 5544–5551, 2001.

    PubMed  CAS  Google Scholar 

  750. Ohman Forslund K, Nordqvist K: The melanoma antigen genes—any clues to their functions in normal tissues? Exp Cell Res 265: 185–194, 2001.

    PubMed  CAS  Google Scholar 

  751. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647, 1991.

    PubMed  Google Scholar 

  752. De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C, et al.: Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40: 360–369, 1994.

    Article  PubMed  CAS  Google Scholar 

  753. Rogner UC, Wilke K, Steck E, Korn B, Poutska A: The melanoma antigen (MAGE) family is clustered in the chromosomal band Xq28. Genomics 29: 725–731, 1995.

    PubMed  CAS  Google Scholar 

  754. Lurquin C, De Smet C, Brasseur F, Muscatelli F, Martelange V, De Plaen E, Brasseur R, Monaco AP, Boon T: Two members of th human MAGEB gene family loacted in Xp21.3 are expressed in tumors of various histological origins. Genomics 46: 397–408, 1997.

    Article  PubMed  CAS  Google Scholar 

  755. Lucas S, De Smet C, Arden KC, Viars CS, Lethe B, Lurquin C, Boon T: Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58: 743–752, 1998.

    PubMed  CAS  Google Scholar 

  756. Pold M, Zhou J, Chen GL, Hall JM, Vescio RA, Berenson JR: Identification of a new, unorthodox member of the MAGE gene family. Genomics 59: 161–167, 1999.

    PubMed  CAS  Google Scholar 

  757. Aubry F, Satie AP, Rioux-Leclercq N, Rajpert-De Meyts E, Spagnoli GC, Chomez P, De Backer O, Jegou B, Samson M: MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer 92: 2778–2785, 2001.

    PubMed  CAS  Google Scholar 

  758. Gillespie AM, Coleman RE: The potential of melanoma antigen expression in cancer therapy. Cancer Treat Rev 25: 219–227, 1999.

    Article  PubMed  CAS  Google Scholar 

  759. Chen Y-T, Old LJ: Cancer-testis antigens: targets for cancer immunotherapy. Cancer J from Scientific American 5: 16–17, 1999.

    CAS  Google Scholar 

  760. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T: Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80: 219–230, 1999.

    Article  PubMed  CAS  Google Scholar 

  761. Boon T, Old LJ: Tumor antigens. Curr Opin Immunol 9: 681–683, 1997.

    Article  PubMed  CAS  Google Scholar 

  762. Sahin U, Koslowski M, Tureci O, Eberle T, Zwick C, Romeike B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh M: Expression of cancer testis genes in human brain tumors. Clin Cancer Res 6: 3916–3922, 2000.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2005). Immunophenotypic Characterization of Infiltrating Poly- and Mononuclear Cells in Childhood Brain Tumors. In: Molecular Markers of Brain Tumor Cells. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2804-0_2

Download citation

Publish with us

Policies and ethics