Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 178))

Abstract

The solar wind interaction with planetary magnetospheres is a multifarious topic of which our understanding continues to grow as we obtain more detailed observations and more capable numerical codes. We attempt to explain how the system functions by examining the output of models of increasing sophistication. A gasdynamic numerical model produces a standing bow shock in front of a fixed impenetrable obstacle. The post-shock flow is heated and deflected but no plasma depletion layer is formed in the subsolar region contrary to observations. If magnetic forces are included, then a self-consistent obstacle size can be produced and plasma depletion extends all the way to the subsolar region. While a standing slow mode wave has been reported in the subsolar region, it appears that such a wave is not essential to the formation of a subsolar plasma depletion layer. Both the gasdynamic and magnetohydrodynamic models are self-similar. They do not change with the size of the obstacle. However, in the real solar wind interaction we expect that the relative scale size of ion motion and the radius of the obstacle will change the nature of the interactions. Hybrid simulations allow this multiscale coupling to be explored and shrinking the size of the obstacle relative to the gyroradius enhances the role of kinetic processes. Phenomena such as upstream ions, plasma sheet formation, and reconnection can be found in surprisingly tiny magnetospheres. Finally, we contrast how the magnetospheres of the Earth and Jupiter are powered. In the former case the solar wind interaction is very important and the latter case much less so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanco-Cano, X., Omidi, N., and Russell, C. T., 2003, Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida, J. Geophys. Res. 108:1216, doi: 10.1029/2002JA009618.

    Article  Google Scholar 

  • Brecht, S. H., 1990, Magnetic asymmetries of unmagnetized planets, Geophys. Res. Lett. 17:1243–1246.

    Article  ADS  Google Scholar 

  • Dungey, J. W., 1961, Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6:47–48.

    Article  ADS  Google Scholar 

  • Dungey, J. W., 1963, The structure of the exosphere or adventures in velocity space, in: Geophysics: The Earth’s Environment, C. Dewitt, J. Hieblot and A. Lebeau, eds., New York, Gordon and Breach, pp. 505–550.

    Google Scholar 

  • Fedder, J. A., Lyon, J. G., and Giuliani, J. L. Jr., 1986, Numerical simulations of comets: Predictions for Comet Giacobini-Zinner, EOS Trans. AGU 67:17–18.

    ADS  Google Scholar 

  • Fedder, J. A., Slinker, S. P., Lyon, J. G., Russell, C. T., Fenrich, F. R., and Luhmann, J. G., 1997, A first comparison of POLAR magnetic field measurements and magnetohydrodynamic simulation results for field-aligned currents, Geophys. Res. Lett. 24:2491–2494.

    Article  ADS  Google Scholar 

  • Lipatov, A. S., Motschman, U., Bagdonat, T., 2002, 3D hybrid simulations of the interaction of the solar wind with a weak comet, Planet. Space Sci. 50(4):403–411.

    Article  ADS  Google Scholar 

  • Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S., 1984a, Patterns of potential magnetic field merging sites on the dayside magnetopause, J. Geophys. Res. 89:1739–1742.

    Article  ADS  Google Scholar 

  • Luhmann, J. G., Walker, R. J., Russell, C. T., Spreiter, J. R., Stahara, S. S., and Williams, D. J., 1984b, Mapping the magnetosheath field between the magnetopause and bow shock: Implications for magnetospheric particle leakage, J. Geophys. Res. 89:6829–6834.

    Article  ADS  Google Scholar 

  • Lyon, J. G., 1994, MHD simulations of the magnetosheath, Adv. Space Res. 14(7):21–28.

    Article  ADS  Google Scholar 

  • McPherron, R. L., 1991, Physical processes producing magnetospheric substorms and magnetic storms, in: Geomagnetism, J. Jacob, ed., Academic Press, p. 593.

    Google Scholar 

  • Omidi, N., Blanco-Cano, X., Russell, C. T., Karimabadi, H., and Acuna, M., 2002, Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics, J. Geophys. Res. 107:1487, doi: 10.1029/2002JA009441.

    Article  Google Scholar 

  • Omidi, N., Blanco-Cano, X., Russell, C. T., and Karimabadi, H., 2003, Dipolar magnetospheres and their characterization as a function of magnetic moment, Adv. Space Res., in press.

    Google Scholar 

  • Ogino, T., 1993, Two dimensional MHD code, in: Computer Space Plasma Physics: Simulations and Software, H. Matsumoto and Y. Omura, ed., 161, Terra, Tokyo.

    Google Scholar 

  • Raeder, J., McPherron, R. L., Frank, L. A., Peterson, W. R., Sigwarth, J. B., Lu, G., Kokubun, S., Mukai, T., and Slavin, J. A., 2001, Global simulation of the geospace environment modeling substorm challenge event, J. Geophys. Res. 106:381–396.

    Article  ADS  Google Scholar 

  • Raeder, J., 2003, Global geospace modeling: Tutorial and review, in: Space Plasma Simulation, J. Buchner, C. T. Dum, and M. Scholer, eds., 615, Springer Verlag, Heidelberg.

    Google Scholar 

  • Russell, C. T., and McPherron, R. L., 1973, The magnetotail and substorms, Space Sci. Rev. 15:205–266.

    Article  ADS  Google Scholar 

  • Russell, C. T., Fedder, J. A., Slinker, S. P., Zhou, X-W., Le, G., Luhmann, J. G., Fenrich, F. R., Chandler, M. O., Moore, T. E., and Fuselier, S. A., 1998a, Entry of the POLAR spacecraft into the polar cusp under northward IMF conditions, Geophys. Res. Lett. 25:3015–3018.

    Article  ADS  Google Scholar 

  • Russell, C. T., Khurana, K. K., Huddleston, D. E., and Kivelson, M. G., 1998b, Localized reconnection in the near Jovian magnetotail, Science 280:1061–1064.

    Article  ADS  Google Scholar 

  • Russell, C. T., Wang, Y. L., and Raeder, J., 2003, Possible dipole tilt dependence of dayside magnetopause reconnection, Geophys. Res. Lett. 30:1037, doi: 10.1029/2003GL017725.

    Article  Google Scholar 

  • Siscoe, G. L., Crooker, N. U., Erickson, G. M., Sonnerup, B. U. O., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., Weimer, D. R., White, W. W., and Wilson, G. R., 2002, MHD properties of magnetosheath flow, Planet Space Sci. 50(5–6):461–471.

    Article  ADS  Google Scholar 

  • Song, P., and Russell, C. T, 1992, Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field, J. Geophys. Res. 97:1411–1420.

    Article  ADS  Google Scholar 

  • Song, P., Russell, C. T., Gosling, J. T., Thomsen, M., and Elphic, R. C., 1990, Observations of the density profile in the magnetosheath near the stagnation streamline, Geophys. Res. Lett. 17:2035–2038.

    Article  ADS  Google Scholar 

  • Song, P., Russell, C. T., and Thomsen, M. F., 1992, Slow mode transition in the frontside magnetosheath, J. Geophys. Res. 97:8295–8305.

    Article  ADS  Google Scholar 

  • Spreiter, J. R., Summers, A. L., and Alksne, A. Y., 1966, Hydromagnetic flow around the magnetosphere, Planet. Space Sci. 14:223–253.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M., 1983, Plasma distribution and flow, in: Physics of the Jovian Magnetosphere, A. J. Dessler, ed., London, Cambridge University Press, pp. 395–453.

    Google Scholar 

  • Wang, Y. L., Raeder, J., Russell, C. T., Phan, T. D., and Manapat, M., 2003a, Plasma depletion layer: Event studies with a global model, J. Geophys. Res. 108:1010, doi: 10.1029/2002JA009281.

    Article  Google Scholar 

  • Wang, Y. L., Raeder, J., and Russell, C. T., 2003b, Plasma depletion layer: Magnetosheath flow structure and forces, Annales Geophysicae, in press.

    Google Scholar 

  • Wang, Y. L., Raeder, J., and Russell, C. T., 2003c, Plasma depletion layer: The role of the slow mode waves, Annales Geophysicae, submitted.

    Google Scholar 

  • Winske, D., and Omidi, N., 1996, A nonspecialist’s guide to kinetic simulations of space plasmas, J. Geophys. Res. 101:17,287–17,304.

    Article  ADS  Google Scholar 

  • Wu, C. C., 1992, MHD flow past an obstacle: Large scale flow in the magnetosheath, Geophys. Res. Lett. 19:87.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Russell, C.T., Blanco-Cano, X., Omidi, N., Raeder, J., Wang, Y.L. (2005). The Solar Wind Interaction with Planetary Magnetospheres. In: Sauvaud, JA., Němeček, Z. (eds) Multiscale Processes in the Earth’s Magnetosphere: From Interball to Cluster. NATO Science Series II: Mathematics, Physics and Chemistry, vol 178. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2768-0_2

Download citation

Publish with us

Policies and ethics