Advertisement

Monte Carlo Simulations of Liquids of Mesogenic Oligomers

  • Michele Vacatello
  • Manuela Vacatello
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 177)

Abstract

Monte Carlo simulations have been recently performed for model liquids of dimers and trimers consisting of rigid groups connected by semiflexible spacers. Though highly idealized, the models take into account the three principal factors responsible for the onset of nematic order in oligomers and polymers of this kind, i.e. the anisometry of the rigid groups, the anisotropy of their attractive interactions and the intrinsic conformational properties of the molecules under study. In a first set of simulations, the conformation of model trimers has been approximately regulated to mimic idealized systems of rigid groups separated by (CH2)n spacers with n odd or even. The simulated systems show reversible isotropic/nematic phase transitions at well defined temperatures, with odd-even oscillations in good agreement with experiments. The transitions are coupled with a conformational selection favoring extended conformations in the nematic liquids. Simulations of model oligomers with conformational properties approximating those of a well characterized series of mesogenic oligoesters are currently underway.

Keywords

Torsion Angle Nematic Phase Isotropic Liquid Conformational Characteristic Orientational Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Depp and W. Howard, Sci. Am., 266:90, 1993.ADSCrossRefGoogle Scholar
  2. [2]
    D. Demus, Liq. Cryst., 5:75, 1989.CrossRefGoogle Scholar
  3. [3]
    W. Maier and A. Saupe, Z. Naturforsch., 13a:564, 1958.ADSGoogle Scholar
  4. [4]
    W. Maier and A. Saupe, Z. Naturforsch., 14a:882, 1959.ADSGoogle Scholar
  5. [5]
    W. Maier, A. Saupe, Z. Naturforsch., 15a:287, 1960.ADSGoogle Scholar
  6. [6]
    L. Onsager, Ann. N. Y. Acad. Sci., 51:627, 1949.ADSCrossRefGoogle Scholar
  7. [7]
    B. Barboy and W.M. Gelbart, J. Stat. Phys., 22:709, 1980.MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    P.J. Flory and G. Ronca, Mol. Cryst. Liq. Cryst., 54:289, 1979.CrossRefGoogle Scholar
  9. [9]
    P.J. Flory and G. Ronca, Mol. Cryst. Liq. Cryst., 54:311, 1979.CrossRefGoogle Scholar
  10. [10]
    P.A. Irvine and P.J. Flory, J. Chem. Soc. Faraday Trans., 80:1807, 1984.CrossRefGoogle Scholar
  11. [11]
    P.A. Irvine and P.J. Flory, J. Chem. Soc. Faraday Trans., 80:1821, 1984.CrossRefGoogle Scholar
  12. [12]
    A. Sirigu, in Liquid Crystallinity in Polymers, A. Ciferri, Ed., VCH Publishers, Inc., 1991.Google Scholar
  13. [13]
    W.R. Krigbaum and J. Watanabe, Polymer, 24:1299, 1983.CrossRefGoogle Scholar
  14. [14]
    C.K. Ober, J.I. Jin, and R.W. Lenz, Polym. J., 14:9, 1982.CrossRefGoogle Scholar
  15. [15]
    A. Abe, Macromolecules, 17:2280, 1984.CrossRefADSGoogle Scholar
  16. [16]
    D.Y. Yoon, S. Bruckner, W. Wolksen, J.C. Scott and A.C. Griffin, Faraday Discuss. Chem. Soc., 79:41, 1985.CrossRefGoogle Scholar
  17. [17]
    G. Sigaud, D.Y. Yoon, and A.C. Griffin, Macromolecules, 16:975, 1983.CrossRefGoogle Scholar
  18. [18]
    D.Y. Yoon and S. Bruckner, Macromolecules, 18:651, 1985.CrossRefADSGoogle Scholar
  19. [19]
    P. J. Flory, Advances in Polymer Science, 59:1, 1984.Google Scholar
  20. [20]
    P.J. Flory, Mat. Res. Soc. Symp. Proc., 134:3, 1989.Google Scholar
  21. [21]
    D.Y. Yoon and P.J. Flory, Mat. Res. Soc. Symp. Proc., 134:11, 1989.Google Scholar
  22. [22]
    D.J. Photinos, E.T. Samulski, and H. Toriumi, J. Chem. Soc. Farady Trans., 88:1875, 1992.CrossRefGoogle Scholar
  23. [23]
    K. Nicklas, P. Bopp, and J. Brickmann, J. Chem. Phys., 101:3157, 1994.CrossRefADSGoogle Scholar
  24. [24]
    A. Ferrarini, G.R. Luckurst, P.L. Nordio, and S.J. Roskilly, Mol. Phys., 85:131 [10], 1995.CrossRefADSGoogle Scholar
  25. [25]
    H.S. Serpi and D.J. Photinos, J. Chem. Phys., 105:1718, 1996.CrossRefADSGoogle Scholar
  26. [26]
    A. Ferrarini, G. R. Luckurst, P. L. Nordio, S. J. Roskilly, Liq. Cryst., 21:373, 1996.CrossRefGoogle Scholar
  27. [27]
    D. Frenkel, H.N.W. Lekkerkerker, and A. Stroobants, Nature, 332:822, 1988.CrossRefADSGoogle Scholar
  28. [28]
    D. Frenkel, Mol. Phys., 60:1, 1987.CrossRefADSGoogle Scholar
  29. [29]
    M.P. Allen, D. Frenkel, and J. Talbot, Comput. Phys. Rep., 9:301, 1989.CrossRefADSGoogle Scholar
  30. [30]
    D. Frenkel, Liq. Cryst., 5:929, 1989.CrossRefGoogle Scholar
  31. [31]
    P.J. Camp, M.P. Allen, and A.J. Masters, J. Chem. Phys., 111:9871, 1999.CrossRefADSGoogle Scholar
  32. [32]
    M.P. Allen, J. Chem. Phys., 112:5447, 2000.CrossRefADSGoogle Scholar
  33. [33]
    G.R. Luckurst, R.A. Stephens, and R.W. Phippen, Liq. Cryst., 8:451, 1990.CrossRefGoogle Scholar
  34. [34]
    M.P. Neal, M.D. De Luca, and C.M. Care, Mol. Simul., 14:245, 1995.CrossRefGoogle Scholar
  35. [35]
    R. Berardi, H.G. Kuball, R. Memmer, and C. Zannoni, J. Chem. Soc. Faraday Trans., 94:1229, 1998.CrossRefGoogle Scholar
  36. [36]
    J.G. Gay and B.J. Berne, J. Chem. Phys., 74:3316, 1981.CrossRefADSGoogle Scholar
  37. [37]
    S.J. Picken, W.F. Van Gunsteren, P.P. Van Duijnen, and W.H. De Jeu, Liq. Cryst., 6:357, 1989.CrossRefGoogle Scholar
  38. [38]
    M.R. Wilson and M.P. Allen, Liq. Cryst., 12:157, 1992.CrossRefGoogle Scholar
  39. [39]
    S.S. Patnaik, S.J. Plimpton, R. Pachter, and W.W. Adams, Liq. Cryst., 19:213, 1995.CrossRefGoogle Scholar
  40. [40]
    M. Yoneka and Y. Iwakabe, Liq. Cryst., 18:45, 1995.CrossRefGoogle Scholar
  41. [41]
    Z. Wang, J.A. Lupo, S. Patnaik, and R. Pachter, Comput. Theor. Polym. Sci., 11:375, 2001.CrossRefGoogle Scholar
  42. [42]
    M. Vacatello and M. Iovino, J. Chem. Phys., 104:2721, 1995.CrossRefADSGoogle Scholar
  43. [43]
    M. Vacatell and M. Iovino, Liq. Cryst., 22:75, 1997.CrossRefGoogle Scholar
  44. [44]
    M. Vacatello and G. Di Landa, Macromol. Theory Simul., 8:85, 1999.CrossRefGoogle Scholar
  45. [45]
    M. Vacatello, Polym. Mat. Sci. Eng., 85:442, 2001.Google Scholar
  46. [46]
    M. Vacatello, Macromol. Theory Simul., 11:501, 2002.CrossRefGoogle Scholar
  47. [47]
    M. Vacatello, D.Y. Yoon, and B.C. Laskowski, J. Chem. Phys., 93:779, 1990.CrossRefADSGoogle Scholar
  48. [48]
    U.W. Suter, E. Saiz, and P.J. Flory, Macromolecules, 16:1317, 1983.CrossRefADSGoogle Scholar
  49. [49]
    M. Vacatello and P.J. Flory, Macromolecules, 19:405, 1986.CrossRefADSGoogle Scholar
  50. [50]
    M. Hutnik, A.S. Argon, and U.W. Suter, Macromolecules, 24:5956, 1991.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Michele Vacatello
    • 1
  • Manuela Vacatello
    • 1
  1. 1.Dipartimento di Chimica and INSTM Research UnitUniversità di NapoliNapoliItaly

Personalised recommendations