Computer Simulations of Liquid Crystal Polymers and Dendrimers

  • Mark R. Wilson
  • Lorna M. Stimson
  • Jaroslav M. Ilnytskyi
  • Zak E. Hughes
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 177)


This article describes some of the progress made towards the simulation of liquid crystalline polymers and dendrimers within our laboratory. We describe the use of hybrid models, where a mixture of spherical and nonspherical potentials can be linked together to form model macromolecules. Results are presented for hybrid models of a side-chain and a main chain liquid crystal polymer, which have been studied by molecular dynamics simulation. Preliminary results are also presented from a modelling study of a third generation carbosilane liquid crystalline den-drimer. These involve molecular dynamics studies of single molecules in a solvent using a hybrid Gay-Berne/Lennard-Jones model; and studies of the bulk phases of the dendrimer using a coarse-grained hybrid spherocylinder/Lennard-Jones model. We also review briefly some of the progress made with other models for liquid crystals and polymers, point to the problems still faced and some of the current developments designed to overcome them.


Liquid Crystal Nematic Phase Dissipative Particle Dynamic Microphase Separation Liquid Crystalline Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Lee, B. K. Cho, K. J., Ihn, W. K. Lee, N. K. Oh, and W. C. Zin, J. Am. Chem. Soc., 123:4647, 2001.CrossRefGoogle Scholar
  2. [2]
    S. Pensec, F. G. Tournilhac, P. Bassoul, and C. Durliat, J. Phys. Chem. B, 28:3080, 1995.Google Scholar
  3. [3]
    Tschierske, C., J. Mat. Chem., 11:2647, 2001.CrossRefGoogle Scholar
  4. [4]
    R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voigtmartin, and L. Leibler, Macromolecules, 28:3080, 1995.CrossRefADSGoogle Scholar
  5. [5]
    V. Percec, W. D. Cho, and G. Ungar, J. Am. Chem. Soc., 122:10273, 2000.CrossRefGoogle Scholar
  6. [6]
    L. Leibler, Macromolecules, 13:1602, 1980.CrossRefADSGoogle Scholar
  7. [7]
    G. Floudas, B. Vazaiou, F. Schipper, R. Ulrich, U. Wiesner, U., H. Iatrou, and N. Hadjichristidis, Macromolecules, 34:2947, 2001.CrossRefADSGoogle Scholar
  8. [8]
    N. L. Allinger, Y. H. Yuh, and J. Lii, J. Am. Chem. Soc., 111:8551, 1989.CrossRefGoogle Scholar
  9. [9]
    M. R. Wilson, Liq. Cryst., 21:437, 1996.CrossRefGoogle Scholar
  10. [10]
    M. R. Wilson, and M. P. Allen, Molec. Cryst. Liq. Cryst., 198:465, 1991.CrossRefGoogle Scholar
  11. [11]
    M. R. Wilson, and M. P. Allen, Liq. Cryst., 12:157, 1992.CrossRefGoogle Scholar
  12. [12]
    C. McBride, M. R. Wilson, and J. A. K. Howard, Molec. Phys., 93:955, 1998.CrossRefADSGoogle Scholar
  13. [13]
    R. Berardi, L. Muccioli, and C. Zannoni, ChemPhysChem, 5:104, 2004.CrossRefGoogle Scholar
  14. [14]
    D. L. Cheung, S. J. Clark, and M. R. Wilson, Phys. Rev. E, 65:051709, 2002.CrossRefADSGoogle Scholar
  15. [15]
    M. P. Allen, M. A. Warren, and M. R. Wilson, Phys. Rev. E, 57:5585, 1998.CrossRefADSGoogle Scholar
  16. [16]
    J. G. Gay, and B. J. Berne, J. Chem. Phys., 74:3316, 1981.CrossRefADSGoogle Scholar
  17. [17]
    E. de Miguel, E. M. del Rio, J. T Brown, and M. P. Allen, J. Chem. Phys., 105:4234, 1996.CrossRefADSGoogle Scholar
  18. [18]
    G. R. Luckhurst, R. A. Stephens, and R. W. Phippen, Liq. Cryst., 8:451, 1990.CrossRefGoogle Scholar
  19. [19]
    R. Berardi, A. P. J. Emerson, and C. Zannoni, Faraday Trans., 89:4069, 1993.CrossRefGoogle Scholar
  20. [20]
    C. Zannoni, J. Mat. Chem., 11:2637, 2001.CrossRefGoogle Scholar
  21. [21]
    R. Berardi, and C. Zannoni, J. Chem. Phys., 113:5971, 2000.CrossRefADSGoogle Scholar
  22. [22]
    M. P. Neal and A. J. Parker, Molec. Cryst. Liq. Cryst., 330:1809, 1999.CrossRefGoogle Scholar
  23. [23]
    M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, J. Chem. Phys., 105:2850, 1996.CrossRefADSGoogle Scholar
  24. [24]
    A. Cuetos, J. M. Ilnytskyi, and M. R. Wilson, Molec. Phys., 100:3839, 2002.CrossRefADSGoogle Scholar
  25. [25]
    K. Binder, Introduction: General aspects of computer simulation techniques and their applications in polymer physics. In K. Binder, editor, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, chapter 1, Oxford University Press, New York, 1995.Google Scholar
  26. [26]
    P. A. Lebwhol and G. Lasher, Phys. Rev. A, 6:426, 1972.CrossRefADSGoogle Scholar
  27. [27]
    U. Fabbri and C. Zannoni, Molec. Phys., 58:763, 1986.CrossRefADSGoogle Scholar
  28. [28]
    D. J. Cleaver and M. P. Allen, Molec. Phys., 80:253, 1993.CrossRefADSGoogle Scholar
  29. [29]
    C. Chiccoli, P. Pasini, F. Semeria, E. Berggren, and C. Zannoni, Molec. Cryst. Liq. Cryst., 290:237, 1996.CrossRefGoogle Scholar
  30. [30]
    C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni, Molec. Cryst. Liq. Cryst., 212:197, 1992.CrossRefGoogle Scholar
  31. [31]
    C. Chiccoli, S. Guzzetti, P. Pasini and C. Zannoni, Molec. Cryst. Liq. Cryst., 360:119, 2001.CrossRefGoogle Scholar
  32. [32]
    J. M. Ilnytskyi, S. Sokolowski, and O. Pizio, Phys. Rev. E, 59:4161, 1999.CrossRefADSGoogle Scholar
  33. [33]
    A. D. Sokal, (1995). Monte carlo methods for the self-avoiding walk. In Binder, K., editor, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, chapter 1. Oxford University Press, New York.Google Scholar
  34. [34]
    I. Carmesin and K. Kremer, Macromolecules, 21:2819, 1988.CrossRefADSGoogle Scholar
  35. [35]
    R. D. Groot and P. B. Warren, J. Chem. Phys., 107:4423, 1997.CrossRefADSGoogle Scholar
  36. [36]
    R. D. Groot and T. J. Madden, J. Chem. Phys., 108:8713, 1998.CrossRefADSGoogle Scholar
  37. [37]
    R. D. Groot, T. J. Madden and D. J. Tildesley, J. Chem. Phys., 110:9739, 1999.CrossRefADSGoogle Scholar
  38. [38]
    R. D. Groot and K. L. Rabone, Biophysical J., 81:725, 2001.CrossRefADSGoogle Scholar
  39. [39]
    R. D. Groot, J. Chem. Phys., 118:11265, 2003.CrossRefADSGoogle Scholar
  40. [40]
    M. R. Wilson, J. Chem. Phys., 107:8654, 1997.CrossRefADSGoogle Scholar
  41. [41]
    D. J. Earl, J. M. Ilnytskyi, and M. R. Wilson, Molec. Phys., 99:1719, 2001.CrossRefADSGoogle Scholar
  42. [42]
    M. R. Wilson, Parallel molecular dynamics techniques for the simulation of anisotropic systems. In P. Pasini, and C. Zannoni editors, Advances in computer simulation of liquid crystals, volume 545 of Series C: Mathematical and Physical Sciences, chapter 13. Kluwer Academic Publishers, 2000.Google Scholar
  43. [43]
    J. M. Ilnytskyi, and M. R. Wilson, Comput. Phys. Comm., 134:23, 2001.CrossRefADSzbMATHGoogle Scholar
  44. [44]
    J. M. Ilnytskyi, and M. R. Wilson, Comput. Phys. Comm., 148:43, 2002.CrossRefADSGoogle Scholar
  45. [45]
    R. M. Richardson, E. B. Barmatov, I. J. Whitehouse, V. P. Shibaev, T. Yongjie, and M. H. F. Godinho, Molec. Cryst. Liq. Cryst., 330:1529, 1999.Google Scholar
  46. [46]
    L. M. Stimson and M. R. Wilson, unpublished work, 2003.Google Scholar
  47. [47]
    A. V. Lyulin, M. S. A. Barwani, M. P. Allen, M. R. Wilson, I. Neelov, and N. K. Allsopp, Macromolecules, 31:4626, 1998.CrossRefADSGoogle Scholar
  48. [48]
    H. Meier, and M. Lehmann, Angew. Chem. Int. Ed., 37:643, 1998.CrossRefGoogle Scholar
  49. [49]
    J. Issberner, R. Moors, and F. Vögtle, Angew. Chem. Int. Ed., 33(23/24):2413, 1994.Google Scholar
  50. [50]
    S. Bauer, H. Fischer, and H. Ringsdorf, Angew. Chem. Int. Ed. Engl., 32(11):1589, 1993.CrossRefGoogle Scholar
  51. [51]
    V. Percec, C. Peihwei, G. Ungar, and J. Zhou, calamitic nematic and smectic thermotropic liquid crystalline phases. J. Am. Chem. Soc., 117:11441, 1995.CrossRefGoogle Scholar
  52. [52]
    S. A. Ponomarenko, N. I. Boiko, E. Rebrov, A. Muzafarov, I. J. Whitehouse, R. M. Richardson, and V. P. Shibaev, Mol. Cryst. Liq. Cryst., 332:43, 1999.CrossRefGoogle Scholar
  53. [53]
    S. A. Ponomarenko, N. I. Boiko, V. P. Shibaev, R. M. Richardson, I. J. White-house, E. Rebrov and A. Muzafarov, Macromolecules, 22:5549, 2000.CrossRefADSGoogle Scholar
  54. [54]
    S. A. Ponomarenko, E. A. Rebrov, A. Y. Bobrovsky, N. I. Boiko, A. M. Muzafarov and V. P. Shibaev, Liq. Cryst., 21(1):1, 1996.CrossRefGoogle Scholar
  55. [55]
    R. M. Richardson, I. J. Whitehouse, S. A. Ponomarenko, N. I. Boiko and V. P. Shibaev, Mol. Cryst. Liq. Cryst., 330:176, 1999.Google Scholar
  56. [56]
    M. R. Wilson, J. M. Ilnytskyi, and L. M. Stimson, J. Chem. Phys., 119:3509, 2003.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Mark R. Wilson
    • 1
  • Lorna M. Stimson
    • 1
  • Jaroslav M. Ilnytskyi
    • 1
  • Zak E. Hughes
    • 1
  1. 1.Department of ChemistryUniversity of DurhamDurhamUK

Personalised recommendations