Advertisement

Regular and Chaotic Rheological Behavior of Tumbling Polymeric Liquid Crystals

  • Siegfried Hess
  • Martin Kröger
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 177)

Abstract

The theological properties of nematic liquid crystalline polymers are strongly affected by the dynamic behavior of the molecular alignment. Starting from a closed nonlinear inhomogeneous relaxation equation for the five components of the alignment tensor which, in turn, can be inferred from a generalized Fokker-Planck equation, it has recently been demonstrated (G. Rienäcker, M. Kröger, and S. Hess, Phys. Rev. E 66, 040702(R) (2002); Physica A 315, 537 (2002)) that the rather complex orientation behavior of tumbling nematics can even be chaotic in a certain range of the relevant control variables, viz. the shear rate and tumbling parameter. Here the theological consequences, in particular the shear stress and the normal stress differences, as well as the underlying dynamics of the alignment tensor are computed and discussed. For selected state points, long-time averages are evaluated both for imposed constant shear rate and constant shear stress. Orientational and theological properties are presented as function of the shear rate. The transitions between different dynamic states are detected and discussed. Representative examples of alignment orbits and theological phase portraits give insight into the dynamic behavior.

Keywords

Shear Rate Phase Portrait Nematic Phase Normal Stress Difference Constant Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Gähwiler, Phys. Rev. Lett., 28:1554, 1972); P. Pieranski and E. Guyon, Phys. Rev. Lett., 32:924, 1974.CrossRefADSGoogle Scholar
  2. [2]
    R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford, UK, 1999.Google Scholar
  3. [3]
    G. Kiss and R.S. Porter, J. Polymer Sci. Polymer Symp., 65:193, 1978; P. Moldenaers and J. Mewis, J. Rheol., 30:567, 1986; J. Mewis, M. Mortimer, J. Vermant, and P. Moldenaers, Macromolecules, 30:1323, 1997.CrossRefGoogle Scholar
  4. [4]
    P. Fischer, Rheol. Acta, 39:234, 2000.CrossRefGoogle Scholar
  5. [5]
    V. Schmitt, F. Lequeux, A. Pousse, and D. Roux, Langmuir, 10:955, 1994; A. S. Wunenburger, A. Colin, J. Leng, A. Arnedeo, and D. Roux, Phys. Rev. Lett., 86:1374, 2001; J.F. Berret, D.C. Roux, G. Porte, and P. Lindner, Europhys. Lett., 25:521, 2002.CrossRefGoogle Scholar
  6. [6]
    G. Rienäcker, Orientational dynamics of nematic liquid crystals in a shear flow, Thesis TU Berlin, 2000; Shaker Verlag, Aachen, Germany, 2000.Google Scholar
  7. [7]
    M. Grosso, R. Keunings. S. Crescitelli, and P.L. Maffettone, Phys. Rev. Lett., 86:3184, 2001.CrossRefADSGoogle Scholar
  8. [8]
    G. Rienäcker, M. Kröger, and S. Hess, Phys. Rev. E, 66:040702(R), 2002; Physica A, 315:537, 2002.CrossRefADSGoogle Scholar
  9. [9]
    S. Hess, Z. Naturforsch., 30a:728, 1975.ADSGoogle Scholar
  10. [10]
    S. Hess and I. Pardowitz, Z. Naturforsch., 36a:554, 1981.ADSGoogle Scholar
  11. [11]
    C. Pereira Borgmeyer and S. Hess, J. Non-Equilib. Thermodyn., 20:359, 1995.zbMATHADSCrossRefGoogle Scholar
  12. [12]
    S. Hess, Z. Naturforsch., 31a:1034, 1976.ADSGoogle Scholar
  13. [13]
    S. Hess, Flow alignment of a colloidal solution which can undergo a transition from the isotropic to the nematic phase (Liquid crystal), in: Electro-optics and dielectrics of macromolecules and colloids, ed. B.R. Jennings, Plenum Publ. Corp., New York, 1979.Google Scholar
  14. [14]
    M. Doi, Ferroelectrics, 30:247, 1980; J. Polym. Sci. Polym. Phys. Ed., 19:229, 1981.Google Scholar
  15. [15]
    R. Bandyopadhyay, G. Basappa, and A. K. Sood, Phys. Rev. Lett., 84:2022, 2000; R. Bandyopadhyay and A. K. Sood, Europhys. Lett., 56:447, 2001.CrossRefADSGoogle Scholar
  16. [16]
    M.E. Cates, D.A. Head, and A. Ajdari, Phys. Rev. E, 66:025202, 2002.CrossRefADSGoogle Scholar
  17. [17]
    M. G. Forest, Q. Wang, and R. Zhou, Rheol. Acta, 2004) in press; S. Fielding and P. Olmsted, preprint: arXiv.org/abs/cond-mat/0310658; B. Chakrabarti, M. Das, C. Dasgupta, S. Ramaswamy, and A.K. Sood, preprint: arXiv:cond-mat/0311101 vl.Google Scholar
  18. [18]
    G. B. Jeffrey, Proc. R. Soc. London Ser. A, 102:171, 1922.ADSGoogle Scholar
  19. [19]
    J. L. Ericksen, Trans. Soc. Rheol., 5:23, 1961; F.M. Leslie, Arch. Ration. Mech. Anal., 28:265, 1968.MathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Hess, Z. Naturforsch., 31a:1507, 1976.ADSGoogle Scholar
  21. [21]
    P. D. Olmsted and P. Goldbart, Phys. Rev. A, 41:4578, 1990; Phys. Rev. A, 46:4966, 1992; H. See, M. Doi, and R. Larson, J. Chem. Phys., 92:792, 1990.CrossRefADSGoogle Scholar
  22. [22]
    G. Marrucci, Macromolecules, 24:4176, 1991; G. Marrucci and P. L. Maffettone, ibid., 22:4076, 1989; J. Rheol., 34:1217, 1990; P. L. Maffettone, A. Sonnet, and E. G. Virga, J. Non-Newtonian Fluid Mech., 90:283, 2000; P. L. Maffettone and S. Crescitelli, ibid., 59:73, 1995; J. Rheol., 38:1559, 1994; Y. Farhoudi and A. D. Rey, ibid., 37:289, 1993; Q. Wang, ibid., 41:943, 1997; N. C. Andrews, A. J. McHugh, and B. J. Edwards, ibid., 40:459, 1996; P. Ilg, I.V. Karlin, M. Kröger, and H.C. Öttinger, Physica A, 319:134, 2003.CrossRefADSGoogle Scholar
  23. [23]
    J. Feng, C. V. Chaubal, and L. G. Leal, J. Rheol., 42:1095, 1998.CrossRefADSGoogle Scholar
  24. [24]
    M. G. Forest, R. Zhoui, and Q. Wang, J. Rheol., 47:105, 2003CrossRefADSGoogle Scholar
  25. [25]
    G. Rienäcker and S. Hess, Physica A 267:294, 1999.CrossRefGoogle Scholar
  26. [26]
    D. R. J. Chillingworth, E. V. Alonso, and A. A. Wheeler, J. Phys. A: Math. Gen., 34:1393, 2001.CrossRefADSzbMATHGoogle Scholar
  27. [27]
    M. Kröger, Phys. Reports, 390:453, 2004.CrossRefADSGoogle Scholar
  28. [28]
    A. Peterlin and H. A. Stuart, Hand-und Jahrbuch der Chemischen Physik, Vol. 8, 113, Ed. Eucken-Wolf, 1943.Google Scholar
  29. [29]
    C. Zannoni, Liquid crystal observables: static and dynamic properties, in Advances in the computer simulations of liquid crystals, P. Pasini and C. Zannoni, eds., Kluwer Academic Publisher, Dordrecht (2000.Google Scholar
  30. [30]
    W. Muschik, H. Ehrentraut, and C. Papenfuss, J. Non-Equilib. Thermodyn., 22:285, 1997; W. Muschik and B. Su, J. Chem. Phys., 107:580, 1997.CrossRefzbMATHADSGoogle Scholar
  31. [31]
    G. G. Fuller, Optical Rheometry of Complex Fluids Oxford University Press, New York, 1995.Google Scholar
  32. [32]
    G. Marrucci and F. Greco, Mol. Cryst. Liq. Cryst., 206:17, 1991; M. Kröger and H.S. Sellers, in: Complex Fluids, ed. L. Garrido) Lecture notes in physics 415, Springer, NY, 1992) pp. 295–301; G. Sgalari, G. L. Leal, and J. J. Feng, J. Non-Newtonian Fluid Mech., 102:361, 2002CrossRefGoogle Scholar
  33. [33]
    C. Schneggenburger, M. Kröger, and S. Hess, J. Non-Newtonian Fluid Mech., 62:235, 1996.CrossRefGoogle Scholar
  34. [34]
    P. Kaiser, W. Wiese, and S. Hess, J. Non-Equilib. Thermodyn., 17:153, 1992.zbMATHADSCrossRefGoogle Scholar
  35. [35]
    C. Pujolle-Robic, P.D. Olmsted and L. Noirez, Europhys. Lett., 59:364, 2002.CrossRefADSGoogle Scholar
  36. [36]
    I. Pardowitz and S. Hess, J. Chem. Phys., 76:1485, 1980.CrossRefADSGoogle Scholar
  37. [37]
    M. Ellero, M. Kröger, and S. Hess: J. Non-Newtonian Fluid Mech., 105:35, 2002.CrossRefzbMATHGoogle Scholar
  38. [38]
    O. Hess and S. Hess, Physica A, 207:517, 1994.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Siegfried Hess
    • 1
  • Martin Kröger
    • 2
  1. 1.Institute für Theoretische PhysikTechnische Universitlt BerlinBerlinGermany
  2. 2.Polymer Physics, Materials ScienceETH Zentrum, ML H18ZürichSwitzerland

Personalised recommendations