Multiscale Simulation of Liquid Crystals

Applications in the modeling of LC-based biosensors
  • Orlando GuzmĂn
  • Sylvain Grollau
  • Evelina B. Kim
  • Juan J. de Pablo
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 177)


Nematic liquid crystals are characterized by the occurrence of disclination lines, topological defects where the average molecular orientation changes abruptly. Recent experiments have shown that, in addition to their application in displays, liquid crystals permit the detection of ligand-receptor binding by optical amplification. The optimal design of LC-based biosensors requires an understanding of the effects of the presence of biomolecules on the structure and dynamics of nematic liquid crystals. We present a multiscale approach that combines molecular simulations and mesoscale modeling: Monte Carlo simulations are used to study the interactions of diluite colloidal particles, as well as the structure of topological defects; these results compare satisfactorily with the corresponding theoretical calculations at the mesoscale level. The mesoscale modeling of a multi-particle sensor shows that adsorbed biomo- lecules modify the relaxation dynamics in the device: at low surface-coverage densities, the equilibrium structure is characterized by a slightly perturbed uniform nematic order; at a critical density, the dynamics exhibits a slowdown at late stages, characteristic of the inability of the nematic to achieve a uniform order. These results are compared with experimental observations of the nematic response in biosensors.


Liquid Crystal Nematic Liquid Crystal Molecular Simulation Topological Defect Nematic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, Science, 279:2077, 1998.CrossRefADSGoogle Scholar
  2. [2]
    J. J. Skaife and N. L. Abbott, Langmuir, 16:3529, 2000.CrossRefGoogle Scholar
  3. [3]
    J. J. Skaife and N. L. Abbott, Langmuir, 17:5595, 2001.CrossRefGoogle Scholar
  4. [4]
    Y.-Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, Langmuir, 19(5):1671, 2003.CrossRefGoogle Scholar
  5. [5]
    A. N. Beris and B. J. Edwards, Oxford University Press, 1994.Google Scholar
  6. [6]
    E.B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo, J. Chem. Phys., 117(16):7781, 2002.CrossRefADSGoogle Scholar
  7. [7]
    D. Chandler, Oxford University Press, New York, 1987.Google Scholar
  8. [8]
    A. P. Lyubartsev, A. A. Martinovski, S. V. Shevnukov, and P. N. Vorontsov-Velyanov, J. Chem. Phys., 96(3):1776, 1992.CrossRefADSGoogle Scholar
  9. [9]
    F. Wang and D. P. Landau, Phys. Rev. Lett., 86(10):2050, 2001.CrossRefADSGoogle Scholar
  10. [10]
    F. Wang and D. P. Landau, Phys. Rev. E, 64(5):056101, 2001.CrossRefADSGoogle Scholar
  11. [11]
    S. Grollau, E. B. Kim, O. Guzman, N. L. Abbott, and J. J. de Pablo, in preparation, 2003.Google Scholar
  12. [12]
    Y. Gu and N. L. Abbott, Phys. Rev. Lett., 85(22):4719, 2000.CrossRefADSGoogle Scholar
  13. [13]
    S. Grollau, N. L. Abbott, and J. J. de Pablo, Phys. Rev. E, 67(1):011702, 2003.CrossRefADSGoogle Scholar
  14. [14]
    J. Fukuda and H. Yokoyama, Eur. Phys. J. E., 4:389, 2001.CrossRefGoogle Scholar
  15. [15]
    P. Poulin and D. A. Weitz, Phys. Rev. E, 57(1):626, 1998.CrossRefADSGoogle Scholar
  16. [16]
    R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E, 55(3):2958, 1997.CrossRefADSGoogle Scholar
  17. [17]
    M. Tasinkevych, N. M. Silvestre, P. Patricio, and M. M. Telo Da Gama, European Physical Journal E, 9(4):341, 2002.CrossRefADSGoogle Scholar
  18. [18]
    D. Andrienko, G. Germano, and M. P. Allen, Phys. Rev. E, 63(4):041701, 2001.CrossRefADSGoogle Scholar
  19. [19]
    P. Galatola and J.-B. Fournier, Phys. Rev. Lett., 86(17):3915, 2001.CrossRefADSGoogle Scholar
  20. [20]
    P. Galatola, J.-B. Fournier, and H. Stark, Physical Review E, 67(3):031404, 2003.CrossRefADSGoogle Scholar
  21. [21]
    J. A. van Nelson, S. R. Kim, and N. L. Abbott, Langmuir, 18(13):5031, 2002.CrossRefGoogle Scholar
  22. [22]
    K. Lin, J. C. Crocker, A. C. Zerio, and A. G. Yodh, Phys. Rev. Lett., 87(8):088301, 2001.CrossRefADSGoogle Scholar
  23. [23]
    R. R. Shah and N. L. Abbott. Langmuir, 19(2):275, 2003.CrossRefGoogle Scholar
  24. [24]
    A. J. Bray. Soft and fragile matter: Nonequilibrium Dynamics, Metastability and Flow, chapter Coarsening dyanmics of nonequilibrium phase transitions, pages 205, Institute of Physics Publishing, 2000.Google Scholar
  25. [25]
    A. P. Y. Wong, P. wiltzius, and B. Yurke, Phys. Rev. Lett., 68:3583, 1992.CrossRefADSGoogle Scholar
  26. [26]
    A. P. Y. Wong, P. wiltzius, R. G. Larson, and B. Yurke, Phys. Rev. E, 47:2683, 1993.CrossRefADSGoogle Scholar
  27. [27]
    R. E. Blundell and A. J. Bray, Phys. Rev. A, 46:R6154, 1992.CrossRefADSGoogle Scholar
  28. [28]
    M. Zapotocky, P. M. Goldbart, and N. Goldenfeld, Phys. Rev. E, 51:1216, 1995.CrossRefADSGoogle Scholar
  29. [29]
    A. Bhattacharya, M. Rao, and A. Chakrabarti, Phys. Rev. E, 53:4899, 1996.CrossRefADSGoogle Scholar
  30. [30]
    N. V. Priezjev and R. A. Pelcovits, Phys. Rev. E, 64:031710, 2001.CrossRefADSGoogle Scholar
  31. [31]
    N. V. Priezjev and R. A. Pelcovits, Phys. Rev. E, 66:051705, 2002.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Orlando GuzmĂn
    • 1
  • Sylvain Grollau
    • 1
  • Evelina B. Kim
    • 1
  • Juan J. de Pablo
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations