Skip to main content

Multiscale Simulation of Liquid Crystals

Applications in the modeling of LC-based biosensors

  • Conference paper
Computer Simulations of Liquid Crystals and Polymers

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 177))

Abstract

Nematic liquid crystals are characterized by the occurrence of disclination lines, topological defects where the average molecular orientation changes abruptly. Recent experiments have shown that, in addition to their application in displays, liquid crystals permit the detection of ligand-receptor binding by optical amplification. The optimal design of LC-based biosensors requires an understanding of the effects of the presence of biomolecules on the structure and dynamics of nematic liquid crystals. We present a multiscale approach that combines molecular simulations and mesoscale modeling: Monte Carlo simulations are used to study the interactions of diluite colloidal particles, as well as the structure of topological defects; these results compare satisfactorily with the corresponding theoretical calculations at the mesoscale level. The mesoscale modeling of a multi-particle sensor shows that adsorbed biomo- lecules modify the relaxation dynamics in the device: at low surface-coverage densities, the equilibrium structure is characterized by a slightly perturbed uniform nematic order; at a critical density, the dynamics exhibits a slowdown at late stages, characteristic of the inability of the nematic to achieve a uniform order. These results are compared with experimental observations of the nematic response in biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, Science, 279:2077, 1998.

    Article  ADS  Google Scholar 

  2. J. J. Skaife and N. L. Abbott, Langmuir, 16:3529, 2000.

    Article  Google Scholar 

  3. J. J. Skaife and N. L. Abbott, Langmuir, 17:5595, 2001.

    Article  Google Scholar 

  4. Y.-Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, Langmuir, 19(5):1671, 2003.

    Article  Google Scholar 

  5. A. N. Beris and B. J. Edwards, Oxford University Press, 1994.

    Google Scholar 

  6. E.B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo, J. Chem. Phys., 117(16):7781, 2002.

    Article  ADS  Google Scholar 

  7. D. Chandler, Oxford University Press, New York, 1987.

    Google Scholar 

  8. A. P. Lyubartsev, A. A. Martinovski, S. V. Shevnukov, and P. N. Vorontsov-Velyanov, J. Chem. Phys., 96(3):1776, 1992.

    Article  ADS  Google Scholar 

  9. F. Wang and D. P. Landau, Phys. Rev. Lett., 86(10):2050, 2001.

    Article  ADS  Google Scholar 

  10. F. Wang and D. P. Landau, Phys. Rev. E, 64(5):056101, 2001.

    Article  ADS  Google Scholar 

  11. S. Grollau, E. B. Kim, O. Guzman, N. L. Abbott, and J. J. de Pablo, in preparation, 2003.

    Google Scholar 

  12. Y. Gu and N. L. Abbott, Phys. Rev. Lett., 85(22):4719, 2000.

    Article  ADS  Google Scholar 

  13. S. Grollau, N. L. Abbott, and J. J. de Pablo, Phys. Rev. E, 67(1):011702, 2003.

    Article  ADS  Google Scholar 

  14. J. Fukuda and H. Yokoyama, Eur. Phys. J. E., 4:389, 2001.

    Article  Google Scholar 

  15. P. Poulin and D. A. Weitz, Phys. Rev. E, 57(1):626, 1998.

    Article  ADS  Google Scholar 

  16. R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E, 55(3):2958, 1997.

    Article  ADS  Google Scholar 

  17. M. Tasinkevych, N. M. Silvestre, P. Patricio, and M. M. Telo Da Gama, European Physical Journal E, 9(4):341, 2002.

    Article  ADS  Google Scholar 

  18. D. Andrienko, G. Germano, and M. P. Allen, Phys. Rev. E, 63(4):041701, 2001.

    Article  ADS  Google Scholar 

  19. P. Galatola and J.-B. Fournier, Phys. Rev. Lett., 86(17):3915, 2001.

    Article  ADS  Google Scholar 

  20. P. Galatola, J.-B. Fournier, and H. Stark, Physical Review E, 67(3):031404, 2003.

    Article  ADS  Google Scholar 

  21. J. A. van Nelson, S. R. Kim, and N. L. Abbott, Langmuir, 18(13):5031, 2002.

    Article  Google Scholar 

  22. K. Lin, J. C. Crocker, A. C. Zerio, and A. G. Yodh, Phys. Rev. Lett., 87(8):088301, 2001.

    Article  ADS  Google Scholar 

  23. R. R. Shah and N. L. Abbott. Langmuir, 19(2):275, 2003.

    Article  Google Scholar 

  24. A. J. Bray. Soft and fragile matter: Nonequilibrium Dynamics, Metastability and Flow, chapter Coarsening dyanmics of nonequilibrium phase transitions, pages 205, Institute of Physics Publishing, 2000.

    Google Scholar 

  25. A. P. Y. Wong, P. wiltzius, and B. Yurke, Phys. Rev. Lett., 68:3583, 1992.

    Article  ADS  Google Scholar 

  26. A. P. Y. Wong, P. wiltzius, R. G. Larson, and B. Yurke, Phys. Rev. E, 47:2683, 1993.

    Article  ADS  Google Scholar 

  27. R. E. Blundell and A. J. Bray, Phys. Rev. A, 46:R6154, 1992.

    Article  ADS  Google Scholar 

  28. M. Zapotocky, P. M. Goldbart, and N. Goldenfeld, Phys. Rev. E, 51:1216, 1995.

    Article  ADS  Google Scholar 

  29. A. Bhattacharya, M. Rao, and A. Chakrabarti, Phys. Rev. E, 53:4899, 1996.

    Article  ADS  Google Scholar 

  30. N. V. Priezjev and R. A. Pelcovits, Phys. Rev. E, 64:031710, 2001.

    Article  ADS  Google Scholar 

  31. N. V. Priezjev and R. A. Pelcovits, Phys. Rev. E, 66:051705, 2002.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

GuzmĂn, O., Grollau, S., Kim, E.B., de Pablo, J.J. (2005). Multiscale Simulation of Liquid Crystals. In: Pasini, P., Zannoni, C., Žumer, S. (eds) Computer Simulations of Liquid Crystals and Polymers. NATO Science Series II: Mathematics, Physics and Chemistry, vol 177. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2760-5_11

Download citation

Publish with us

Policies and ethics