Skip to main content

Excitonic Bose-Einstein Condensation versus Electron-Hole Plasma Formation

  • Conference paper
Frontiers of Optical Spectroscopy

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 168))

Abstract

After a short introduction we outline the properties of the electron-hole plasma and give some selected examples how its properties have been verified in direct and indirect gap bulk semiconductors and in quantum wells.

Then we present the basic properties expected for an excitonic Bose-Einstein condensation, claims for its observation and the objections put forward to these claims. The contribution will be finished with a short conclusion and outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klingshim, C. (1997), Semiconductor Optics, 2nd printing, Springer, Berlin.

    Google Scholar 

  2. Moskalenko, S.A. (1962), Fiz. Tverd. Tela (Sov. Phys. Solid State) 4, 276.

    Google Scholar 

  3. Blatt, J.M., Böer, K.W. and Brandt, W. (1962), Bose-Condensation of Exctions, Phys. Rev. 126, 169.

    Article  MathSciNet  Google Scholar 

  4. Keldyh, L.V. and Kozlov, A.N (1968), Collective Properties of Excitons in Semiconductors, Sov. Phys. JETP 27, 521.

    ADS  Google Scholar 

  5. Hanamura, E. and Haug, H. (1977) Condensation Effects of Excitons, Phys. Report 33C, 209.

    Article  ADS  Google Scholar 

  6. Snoke, D.W. and Stringari, S. (1995) Bose-Einstein Condensation, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  7. Moskelanko, S.A. and Snoke, D.W. (2000) Bose-Einstein Condensation of Excitons and Biexcitons (and coherent Nonlinear Optics with Excitons), Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  8. Bohnert, K., Anselment, M., Kobbe, G., Klingshirn, C., Haug, H., Koch, S.W., Schmitt-Rink, S. and Abraham, F.F. (1981) Nonequilibrium Properties of Electron-Hole Plasma in Direct-Gap Semiconductors, Z. Physik B 42, 1.

    Article  ADS  Google Scholar 

  9. Bohnert, K., Schmieder, G. and Klingshim, C. (1980), Gain and Reflection Spectroscopy and the Present Understanding of the Electron-Hole Plasma in II–VI Compounds, phys. stat. sol. b 98, 175. Majumder, F. A., Swoboda, H.-E., Kempf, K. and Klingshim, C. (1985) Electron-Hole Plasma in the Direct-Band-Gap Semiconductors CdS and CdSe, Phys. Rev. B 32, 2407. Swoboda, H.-E., Majumder, F.A., Lyssenko, V.G., Klingshim, C. and Banyai, L. (1988) The Electron-Hole Plasma in CdS between 5 K and Room Temperature, Z Phys. B 70, 341.

    Article  ADS  Google Scholar 

  10. Kempf, K., Schmieder, G., Kurtze, G. and Klingshirn, C. (1981) Excitation Induced Renormalization Effects of the Excitonic Polariton Dispersion in CdS, phys. stat. sol. b 107, 297. Schmitt-Rink, S., Lowenau, J.P., Haug, H., Bohnert, K., Kreissl, A., Kempf, K. and Klingshim, C. (1983) Theoretical and Experimental Studies of the Transition from the Exciton to the Plasma Phase, Physica 117/118B, 339.

    Article  ADS  Google Scholar 

  11. Klingshim, C. and Haug, H. (1981) Optical Properties of Highly Excited Direct Gap Semiconductors, Physics Reports 70, 315.

    Article  ADS  Google Scholar 

  12. Zimmermann, R., (1988) Many Particle Theory of Highly Excited Semiconductors, Teubner Texte zur Physik 18.

    Google Scholar 

  13. Kunz, M., Pier, T., Bhargava, R.N., Reznitsky, A., Kozlovskii, V.V., Müller-Vogt, G., Pfister, J.C., Pautrat, J.L. and Klingshim, C. (1990), The Electron-Hole Plasma in Cubic ZnTe and ZnSe Crystals, J. Crystal Growth 101, 734. Majumder, F.A., Klingshim, C., Westphaling, R., Kalt, H., Naumov, A., Stanzl, H., and Gebhardt, W. (1994) Gain Processes in ZnTe Epilayers on GaAs, phys. stat. sol. (b) 186, 591.

    Article  ADS  Google Scholar 

  14. Klingshim, C. Weber, Ch., Chemla, D.S., Miller, D.A.B., Cunningham, J.E., Ell, C. and Haug, H. (1989) The Electron-Hole Plasma in Quasi Two-Dimensional and Three-Dimensional Semiconductors, eingel. Beitrag zu NATO Workshop on "Optical Switching in Low Dimensional Systems", Marbella, Spain, Oct. (1988), NATO ASI Series, B 194, 353.

    Google Scholar 

  15. Beni, G. and Rice, T.M. (1978) Theory of electron-hole liquid in semiconductors, Phys. Rev. B 18, 768.

    Article  ADS  Google Scholar 

  16. Hulin, D., Mysyrowicz, Migus, A., A., Antonetti, A. (1985) Subpicosecond time-resolved Mott transition in CuCl, J. Luminesc. 30, 290.

    Article  Google Scholar 

  17. Jolk, A., Jorger, M., Klingshim, C., Franco, M., Prade, P. and Mysyrowicz, A. (2000) Differential Transmission Spectroscopy (DTS) in Cu2O in the Presence of Cold Excitons, phys. stat. sol. b 221, 295.

    Article  ADS  Google Scholar 

  18. Forchel, A., Laurich, B., Moersch, G., Schmid, W. and Reinecke, T.L. (1981) Experimental Verification of Scaling Relations for Electron-Hole Liquid Condensation, Phys. Rev. Lett. 46, 678.

    Article  ADS  Google Scholar 

  19. Klingshim, C. (1992) Properties of the Electron-Hole Plasma in II–VI Semiconductors, J. of Crystal Growth 117, 753.

    Article  ADS  Google Scholar 

  20. Koch, S.W. (1984) Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems, Lecture Notes in Physics 207 Springer, Berlin.

    Google Scholar 

  21. Thomas, G.A., Frova, A., Hensel, J. C., Miller, R. E., and Lee, P. A. (1976) Collision broadening in the exciton gas outside the electron-hole droplets in Ge, Phys. Rev. B 13, 1692.

    Article  ADS  Google Scholar 

  22. Martin, R.W. (1976), On the mechanism of indirect band to band recombination in germanium electron-hole drops, Solid State Commun. 19, 373 and Martin, R.W. and Störmer, H.L. (1977) On the low energy tail of the electron-hole drop recombination spectrum, Solid State Commun. 22, 523.

    Article  ADS  Google Scholar 

  23. Thomas, G.A., Mock, J.B. and Capizzi, M. (1978) Mott distortion of the electron-hole fluid phase diagram, Phys. Rev. B 18, 4250. Thomas, G.A., Rice, T.M. and Hensel, J.C. (1974) Liquid-Gas Phase Diagram of an Electron-Hole Fluid, Phys. Rev. Lett. 33, 219. Reinecke, T.L. and Ying, S.C. (1975) Droplet Model of Electron-Hole Liquid Condensation in Semiconductors, Phys. Rev. Lett. 35, 311.

    Article  ADS  Google Scholar 

  24. Greenstein, M. and Wolfe, J.P. (1980) Formation of the electron-hole droplet cloud in germanium, Solid State Commun. 33, 309.

    Article  ADS  Google Scholar 

  25. Gourley, P.L. and Wolfe, J.P. (1978) Spatial Condensation of Strain-Confined Excitons and Excitonic Molecules into an Electron-Hole Liquid in Silicon, Phys. Rev. Lett. 40, 526.

    Article  ADS  Google Scholar 

  26. Brinkman, W.F. and Rice, T.M. (1973) Electron-Hole Liquids in Semiconductors, Phys. Rev. B 7, 1508 and references therein.

    Article  ADS  Google Scholar 

  27. Weber, C., Klingshim, C., Chemla, D.S., Miller, D.A.B., Cunningham, J. and Ell, C. (1988) Gain Measurements and Band-Gap Renormalization in GaAs/AlxGa1−x, Multiple-Quantum-Well Structures, Phys. Rev. B 38, 12748. Schlaad, K.-H., Weber, Ch., Cunningham, J., Hoof, C.V., Borghs, G. Weimann, G., Schlapp, W., Nickel, H. and Klingshim, C. (1991) Many-Particle Effects and Nonlinear Optical Properties of GaAs/(AIGa)As Multiple-Quantum-Well Structures under Quasistationary Excitation Conditions, Phys. Rev. B 43, 4268.

    Article  ADS  Google Scholar 

  28. Kulakovskii, V.D. et al. (1989) Band-gap renormalization and band-filling effects in a homogeneous electron-hole plasma in In0.53Ga0.47As/InP single quantum wells, Phys. Rev. B 40, 8087. Lach, E., Kulakovskii, V.D., Forchel, A., Reinecke, T.L., Straka, J., Grutzmacher, D., Weimann, G. (1990) Single and many particle effects in the emission spectra of laterally homogeneous 2D plasmas, phys. stat. sol. b 159, 125.

    Article  ADS  Google Scholar 

  29. Kapon, E. (2003) Self-Ordered Growth and Spectroscopy of Nonplanar Quantum Wires and Quantum Dots, NATO Sciences Series II 90, 243.

    Google Scholar 

  30. Czaja, W. and Schwerdtfeger, C.F. (1974), Evidence for Bose-Einstein condensation of free excitons in AgBr, Solid State Communication 15, 87. Nagasawa, N., Nakata, N., Doi, Y. And Ueta, M. (1975) The Bose condensation of excitonic molecules in CuCl crystals, J. Phys. Soc. Japan 38, 593. Anzai, T., Goto, T. and Ueta, M. (1975) Zeeman effect of an induced absorption line in highly excited CuCl, J. Phys. Soc. Japan 38, 774. Weber, J. and Stolz, H., Decay of the proposed Bose-Einstein condensed excitons in AgBr, Solid State Communication 24, 707. Weber, J. (1976) Indirect near edge emission in pure AgBr, phys. stat. sol. b 78, 699.

    Article  ADS  Google Scholar 

  31. Hönerlage, B., Levy, R., Grun, J.B., Klingshim, C., Bohnert, K. (1985) The Dispersion of Excitons, Polaritons and Biexcitons in Direct-Gap Semiconductors, Physics Reports 124, 161.

    Article  ADS  Google Scholar 

  32. Nagasawa, N., Koizumi, S., Mita, T. and Ueta, M. (1976) Generation of exctionic molecules by giant two-photon absorption in CuCl and CuBr and their Bose condensation, Journ. of Luminesc. 12/13, 587.

    Article  Google Scholar 

  33. Levy, R., Klingshim, C., Ostertag, E., Duy Phach, Vu and Grun, J.B. (1976) Luminescence of a "Cold" Gas of Biexcitons in CuCl, phys. stat. sol. b 77, 381. Duy Phach, Vu., Bivas, A., Hönerlage, B., Grun, J.B., Two-photon resonant Raman Scattering via Biexcitons, phys. stat. sol. b 86, 159. Hönerlage, B., Duy Phach, Vu. And Grun, J.B. (1978) Polarization properties of biexciton luminescence and two-photon Raman emission in CuCl, phys. stat. sol. b 88, 545. Ojima, M., Kushida, T., Shionaya, S., Tanaka, Y., and Oka, Y. (1978) Optical studies of resonantly excited excitonic molecules in CuCl, J. Phys. Soc. Japan. 45, 884. Kushida, T. (1979) Secondary emission under two-photon resonance excitation of excitonic molecule in CuCl, Solid State Commun. 32, 209.

    Article  ADS  Google Scholar 

  34. Peyghambarian, N., Chase, L.L. and Mysyrowic, A. (1983) Bose-Einstein statistical properties and condensation of excitonic molecules in CuCl, Phys. Rev. B 27, 2325.

    Article  ADS  Google Scholar 

  35. Akopyan, I.Kh. and Razbirin, B.S. (1970) Bose Einstein condensation of excitons in a CdSe crystal, JETP Lett. 12, 251.

    ADS  Google Scholar 

  36. Timofeev, V.B., Kulakovskii, V.D. and Kukushkin, I.V. (1983) Spin aligned exciton gas in uniaxially compressed Ge, Physica B + C 117/118, 327.

    Article  ADS  Google Scholar 

  37. Fröhlich, D., Kulik, A., Uebbing, B., Mysyrowic, A., Langer, V., Stolz, H. and von der Osten, W. (1991)., Coherent Propagation and Quantum Beats of Quadrupol Polaritons in Cu2O, Phys. Rev. Lett. 67, 2343. Uihlein, Ch., Fröhlich, D., and Kenklies, R. (1981) Investigation of exction fine structure in Cu2O, Phys. Rev. B 23, 2731.

    Article  ADS  Google Scholar 

  38. Jolk, A. and Klingshirn, C. (1998) Linear and Nonlinear Excitonic Absorption and Photoluminescence Spectra in Cu2O3: Line Shape Analysis and Exciton Drift, phys. stat. sol. b 206, 841.

    Article  ADS  Google Scholar 

  39. Jörger, M., Schmidt, M., Jolk, A., Westphäling, R. and Klingshirn, C. (2001) Absolute External Photoluminescence Quantum Efficiency of the 1s-Orhtoexction in Cu2O, Phys. Rev. B 64, 113204.

    Article  ADS  Google Scholar 

  40. Snoke, D.W., Wolfe, J.P. and Mysyrowicz, A. (1990) Evidence for Bose-Einstein condensation of excitons in Cu2O, Phys. Rev. B 41, 11171.

    Article  ADS  Google Scholar 

  41. Snoke, D.W. and Wolfe, J.P. (1990) Picosecond dynamics of degenerate orthoexcitons in Cu2O, Phys. Rev. B 42, 7876. Naka, N., et al. (1996) A New Aspect of the Bose-Einstein Condensation of Is Exction system in Cu20, Progr. Crystal Grwoth and Charact. 33, 89. Kavoulakis, G.M. (2001) Bose-Einstein Condensation of excitons in Cu2O, Phys. Rev. B 65, 035204.

    Article  ADS  Google Scholar 

  42. Benson, E., Fortin, E., Mysyrowicz, A. (1995) Study of Anomalous Excitonic Transport in Cu2O, physical status solidi b 191, 345. Mysyrowicz, Benson, E. and Fortin, E. (1996) Directed Beam of Excitons Produced by Stimulated Scattering, Phys. Rev. Lett. 77, 896.

    Article  ADS  Google Scholar 

  43. Tikhodeev, S.G., et al. (1997) Comment on "Directed Beam of Excitons Produced by Stimulated Scattering", Phys. Rev. Lett. 78, 3225. Kopelevich, G.A. et al. (1996), Phonon wind and excitonic transport in Cu2O semiconductors, Sov. Phys. JETP 82, 1180. Jackson, A.D. and Kavoulakis, G.M. (2002) Propagation of exction pulses in semiconductors, Europhys. Lett. 59, 807.

    Article  ADS  Google Scholar 

  44. Jolk, A., Jörger, M. and Klingshim, C. (2002) Exciton Lifetime, Auger Recombination and Exciton Transport by Calibrated Differential Absorption Spectroscopy in Cu2O, Phys. Rev. B 65, 245209.

    Article  ADS  Google Scholar 

  45. O'Hara, K.E., Gullingsrud, J.R. and Wolfe, J.P. (1999) Auger decay of excitons in Cu2O, Phys. Rev. B 60, 10872 and O'Hara, K.E., Sútillebháin, L.Ó. and Wolfe, J.P. (1999) Strong nonradiative recombination of excitons in Cu2O and its impact on Bose-Einstein statistics, Phys. Rev. B 60, 10565.

    Google Scholar 

  46. Kavoulakis, G.M. and Mysyrowicz, A. (2000) Auger decay, spin exchange, and their connection to Bose-Einstein condensation of excitons in Cu/sub 2/0, Phys. Rev. B 61, 16619.

    Article  ADS  Google Scholar 

  47. Denev, S. and Snoke, D.W. (2002), Stress dependence of exction relaxation processes in Cu2O, Phys. Rev. B 65, 085211.

    Article  ADS  Google Scholar 

  48. Klingshim, C., Fleck, T. and Jörger, M. (2002) Some Considerations Concerning the Detection of Excitons by Fieldionization in a Schottky Barrier, phys. stat. sol. (b) 234, 23.

    Article  ADS  Google Scholar 

  49. Trauernicht, D.P., Wolfe, J.P. and Mysyrowicz, A. (1986) Thermodynamics of strain-confined paraexcitons in Cu2O, Phys. Rev. B 34, 2561.

    Article  ADS  Google Scholar 

  50. Sun, Y., Wong, G K L, Ketterson, J B (2001) Production of Is quadrupole-orthoexciton polaritons in Cu2O by two-photon pumping, Phys. Rev. B 63, 125323.

    Article  ADS  Google Scholar 

  51. Naka, N. and Nagasawa, N. (2002) Two-photon diagnostics of stress-induced exciton traps and loading of Is-yellow excitons in Cu20, Phys. Rev. B 65, 075209 Naka, N. and Nagasawa, N. (2002) Nonlinear paraexciton kinetics in a potential trap in Cu2O under two-photon resonance excitation, Phys. Rev. B 65, 245203. Naka, N. and Nagasawa, N. (2003) Optical tracking of high-density cooled exctions in potential traps in Cu20, NOEKS 7, March 2003 Karlsruhe. phys. stat. sol. b 238, in press.

    Article  ADS  Google Scholar 

  52. Johnsen, K. and Kavoulakis, G.M. (2001) Probing Bose-Eisntein Condensation of Excitons with Electromagentic Radiation, Phys. Rev. Lett. 86, 858.

    Article  ADS  Google Scholar 

  53. Jörger, M., Tsitisishvili, E., Fleck, T. and Klingshim, C. (2003) Infrared Absorption by Excitons in Cu20, NOEKS 7, March 2003 Karlsruhe, phys. stat. sol. b 238, in press.

    Google Scholar 

  54. Johnston Jr., W.D., Shaklee, K.L. (1974), Considerations relevant to Bose condensation of excitonic molecules in CdSe, Solid State Communic. 15, 73.

    Article  ADS  Google Scholar 

  55. Fetter, A.L. and Wlecka, J.D. (1971) Quantum Theory of Many Particle Systems, Mc Graw Hill, New York.

    Google Scholar 

  56. Lozovik, Yu. E., and Yudson, V.I. (1975), Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism, JETP Lett. 22, 274.

    ADS  Google Scholar 

  57. Butov, L.V. and Filin, A.I. (1998), Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation, Phys. Rev. B 58, 1980. Butov, L.V., Ivanov, A. L., Imamoglu, A., Littlewood, P. B., Shashkin, A. A., Dolgopolov, V. T., Campman, K. L. and Gossard, A. C. (2001), Stimulated Scattering of Indirect Excitons in Coupled Quantum Wells: Signature of a Degenerate Bose-Gas of Excitons, Phys. Rev. Lett. 86, 5608. Butov, L.V., Lai, C. W., Ivanov, A. L., Gossard, A. C., Chemla, D. S. (2002), Towards Bose-Einstein condensation of excitons in potential traps, Nature 417, 47. Butov, L.V., Gossard, A. C., Chemla, D. S. (2002), Macroscopically ordered state in an exciton system, Nature 418, 751.

    Article  ADS  Google Scholar 

  58. Snoke, D., Denev, S., Liu, Y., Pfeiffer, L., West, K. (2002), Long-range transport in excitonic dark states in coupled quantum wells, Nature 418, 754.

    Article  ADS  Google Scholar 

  59. Snoke, D., (2002), Spontaneous Bose Coherence of Excitons and Polaritons, Science 298, 1368.

    Article  ADS  Google Scholar 

  60. Szymanska, M.H. and Littlewood, P.B. (2003) Excitonic binding in coupled quantum wells, Phys. Rev. B 67, 193305.

    Article  ADS  Google Scholar 

  61. Nonlinear Optics and Excitation Kinetics (NOEKS 7), Karlsruhe, February (2003), Proc. to be published in phys. stat. sol. b 238.

    Google Scholar 

  62. Snoke, D. (2003), When should we say we have observed Bose condensation of excitons? NOEKS 07, phys. stat. sol. b 238, in press.

    Google Scholar 

  63. Butov, L.V. (2003), Bose-Einstein condensation of excitons in semiconductors, NOEKS 07, phys. stat. sol. b 238, in press

    Google Scholar 

  64. Lyssenko, V.G. (2003), private communication.

    Google Scholar 

  65. Lyssenko, V.G. and Klingshim, C. (1978), unpublished.

    Google Scholar 

  66. Keldysh, L.V. (2003), private communication.

    Google Scholar 

  67. Hopfield, J.J. and Thomas, D.G. (1963), Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals, Phys. Rev. B 132, 563.

    Article  ADS  Google Scholar 

  68. Houdre, R., Weisbuch, C., Stanley, R.P., Oesterle, U., Pellandini P., Ilegems, M. (1994) Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73, 2043.

    Article  ADS  Google Scholar 

  69. Bucher, B., Steiner, P. and Wachter, P. (1991), Excitonic insulator phase in TmSe0.45Te0.55, Phys. Rev. Lett. 67, 2717.

    Article  ADS  Google Scholar 

  70. Littlewood, P.B. (2002), private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Klingshirn, C. (2005). Excitonic Bose-Einstein Condensation versus Electron-Hole Plasma Formation. In: Di Bartolo, B., Forte, O. (eds) Frontiers of Optical Spectroscopy. NATO Science Series II: Mathematics, Physics and Chemistry, vol 168. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2751-6_15

Download citation

Publish with us

Policies and ethics