Skip to main content

Density Functional Calculations Near Ferromagnetic Quantum Critical Points

  • Conference paper
Physics of Spin in Solids: Materials, Methods and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 156))

  • 942 Accesses

Abstract

We discuss the application of the density functional theory in the local density approximation (LDA) near a ferromagnetic quantum critical point. The LDA fails to describe the critical fluctuations in this regime. This provides a fingerprint of a materials near ferromagnetic quantum critical points: overestimation of the tendency to magnetism in the local density approximation. This is in contrast to the typical, but not universal, tendency of the LDA to underestimate the tendency to magnetism in strongly Hubbard correlated materials. We propose a method for correcting the local density calculations by including critical spin fluctuations. This is based on (1) Landau expansion for the free energy, evaluated within the LDA, (2) lowest order expansion of the RPA susceptibility in LDA and (3) extraction of the amplitude of the relevant (critical) fluctuations by applying the fluctuation-dissipation theorem to the difference between a quantum-critical system and a reference system removed from the quantum critical point. We illustrate some of the aspects of this by the cases of Ni3Al and Ni3Ga, which are very similar metals on opposite sides of a ferromagnetic quantum critical point. LDA calculations predict that Ni3Ga is the more magnetic system, but we find that due to differences in the band structure, fluctuation effects are larger in Ni3Ga, explaining the fact that experimentally it is the less magnetic of the two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.B. Laughlin, G.G. Lonzarich, P. Monthoux and D. Pines, Adv. Phys. 50, 361 (2001).

    Article  ADS  Google Scholar 

  2. S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000).

    Article  ADS  Google Scholar 

  3. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.P. Brison, E. Lhotel, and C. Paulsen, Nature 413, 613 (2001).

    Article  ADS  Google Scholar 

  4. C. Pfleiderer, M. Uhlarz, S.M. Hayden, R. Vollmer, H. von Lohneysen, N.R. Bernhoeft, and G.G. Lonzarich, Nature 412, 58 (2001).

    Article  ADS  Google Scholar 

  5. C.P. Pfleiderer, S.R. Julian and G.G. Lonzarich, Nature 414, 427 (2001).

    Article  ADS  Google Scholar 

  6. H. Yamada, K. Fukamichi and T. Goto, Phys. Rev. B 65, 024413 (2001).

    Article  ADS  Google Scholar 

  7. A.J. Millis, A.J. Schofield, G.G. Lonzarich and S.A. Grigera, Phys. Rev. Lett. 88, 217204 (2002).

    Article  ADS  Google Scholar 

  8. D.J. Singh and I.I. Mazin, Phys. Rev. B 63, 165101 (2001).

    Article  ADS  Google Scholar 

  9. S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, Science 294, 329 (2001).

    Article  ADS  Google Scholar 

  10. D.J. Singh, Phys. Rev. B 61, 13397 (2000); D.J. Singh, Phys. Rev. B 68, 020503 (2003).

    Article  ADS  Google Scholar 

  11. M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl, Phys. Rev. Lett. 82, 4268 (1999).

    Article  ADS  Google Scholar 

  12. S. Kondo, D.C. Johnston, C.A. Swenson, F. Borsa, A.V. Mahajan, L.L. Miller, T. Gu, A.I. Goldman, M.B. Maple, D.A. Gajewski, E.J. Freeman, N.R. Dilley, R.P. Dickey, J. Merrin, K. Kojima, G.M. Luke, Y.J. Uemura, O. Chmaissem and J.D. Jorgensen, Phys. Rev. Lett. 78, 3729 (1997).

    Article  ADS  Google Scholar 

  13. D.J. Singh, P. Blaha, K. Schwarz, and I. I. Mazin, Phys. Rev. B 60, 16359 (1999).

    Article  ADS  Google Scholar 

  14. V. Eyert, K.H. Hock, S. Horn, A. Loidl and P.S. Riseborough, Europhysics Lett. 46, 762 (1999).

    Article  ADS  Google Scholar 

  15. V.I. Anisimov, M.A. Korotin, M. Zöolfl, T. Pruschke, K. Le Hur and T.M. Rice, Phys. Rev. Lett. 83, 364 (1999).

    Article  ADS  Google Scholar 

  16. D.J. Singh and I.I. Mazin, Phys. Rev. B 69, 020402 (2004).

    Article  Google Scholar 

  17. A. Aguayo, I.I. Mazin, and D.J. Singh, cond-mat/0310629.

    Google Scholar 

  18. A. Aguayo and D.J. Singh, Phys. Rev. B 66, 020401 (2002).

    Article  ADS  Google Scholar 

  19. A.G. Petukhov, I.I. Mazin, L. Chioncel and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).

    Article  ADS  Google Scholar 

  20. D.J. Singh, Phys. Rev. B 67, 054507 (2003).

    Article  ADS  Google Scholar 

  21. P. Larson, I.I. Mazin and D.J. Singh, cond-mat/0305407 (Phys. Rev. B, January 2004, in press).

    Google Scholar 

  22. T. Moriya, Spin fluctuations in itinerant electron magnetism (Berlin, Springer, 1985).

    Google Scholar 

  23. M. Shimizu, Rep. Prog. Phys. 44, 329 (1981).

    Article  ADS  Google Scholar 

  24. A.Z. Solontsov and D. Wagner, Phys. Rev. B51, 12410 (1995).

    ADS  Google Scholar 

  25. S.N. Kaul, J. Phys. Cond. Mat. 11, 7597 (1999).

    Article  ADS  Google Scholar 

  26. F.R. de Boer, C.J. Schinkel, J. Biesterbos, and S. Proost, J. Appl. Phys. 40, 1049 (1969).

    Article  ADS  Google Scholar 

  27. P.G. Niklowitz, F. Beckers, N. Bernhoeft, D. Braithwaite, G. Knebel, B. Salce, J. Thomasson, J. Floquet and G.G. Lonzarich (unpublished); presented at Conference on Quantum Complexities in Condensed Matter, 2003.

    Google Scholar 

  28. S.M. Hayden, G.G. Lonzarich and H.L. Skriver, Phys. Rev. B 33, 4977 (1986).

    Article  ADS  Google Scholar 

  29. M.J. Steiner, F. Beckers, P.G. Nicklowitz and G.G. Lonzarich, Physica B 329, 1079 (2003).

    Article  ADS  Google Scholar 

  30. J.J. Buiting, J. Klübler, and F.M. Mueller, J. Phys. F 39 L179 (1983).

    Article  Google Scholar 

  31. V.L. Moruzzi and P.M. Marcus, Phys. Rev. B, 42, 5539 (1990).

    Article  ADS  Google Scholar 

  32. B.I. Min, A.J. Freeman, and H.J.F. Jansen, Phys. Rev. B 37, 6757 (1988).

    Article  ADS  Google Scholar 

  33. J.H. Xu, B.I. Min, A.J. Freeman, and T. Oguchi, Phys. Rev. B 41, 5010 (1990).

    Article  ADS  Google Scholar 

  34. G.Y Guo, Y.K. Wang, Li-Shing Hsu, J. Magn. Magn. Mater. 239, 91 (2002).

    Article  ADS  Google Scholar 

  35. L.-S. Hsu, Y.-K. Wang and G.Y. Guo, J. Appl. Phys. 92, 1419 (2002).

    Article  ADS  Google Scholar 

  36. D.J. Singh, Planewaves Pseudopotentials and the LAPW Method (Kluwer Academic, Boston, 1994).

    Google Scholar 

  37. D. Singh, Phys. Rev. B 43, 6388 (1991).

    Article  ADS  Google Scholar 

  38. S.H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985).

    Article  ADS  Google Scholar 

  39. P. Blaha, K. Schwarz G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for for Calculating Crystal Properties (K. Schwarz, Techn. Universitat Wien, Austria, 2001), ISBN 3-9501031-1-2.

    Google Scholar 

  40. L. Hedin and B. Lundqvist, J. Phys. C, 4, 2064 (1971).

    Article  ADS  Google Scholar 

  41. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  42. G.L. Krasko, Phys. Rev. B, 36 8565 (1987).

    Article  ADS  Google Scholar 

  43. B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap (Chapmann and Hall, New York, 1993).

    MATH  Google Scholar 

  44. C.J. Schinkel, F.R. de Boer, and B. de Hon, J. Phys. F 3, 1463 (1973).

    Article  ADS  Google Scholar 

  45. F. Wallow, G. Neite, W. Schroer and E. Nembach, Phys. Status Solidi A 99, 483 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Mazin, I.I., Singh, D.J., Aguayo, A. (2004). Density Functional Calculations Near Ferromagnetic Quantum Critical Points. In: Halilov, S. (eds) Physics of Spin in Solids: Materials, Methods and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 156. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2708-7_9

Download citation

Publish with us

Policies and ethics