Skip to main content

Electrodilatometry of Liquids, Binary Liquids, and Surfactants

  • Conference paper
Nonlinear Dielectric Phenomena in Complex Liquids

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 157))

  • 970 Accesses

Abstract

When a liquid is subjected to high electric field, its volume change (ΔV) can be increased or decreased depending upon the liquid under investigation. A new technique has been developed from our laboratory to measure the relative volume change per E2 and is known as “Electrodilatometry (ED)” which may be expressed as:

$$ R = \frac{{V - V_0 }} {{V_0 }}\frac{1} {{E^2 }} = \frac{{\Delta V}} {{V_0 }}\frac{1} {{E^2 }} $$

, where R is known as “Electrodilatometric Effect (EDE)”, V and V0 are the volume of liquid with and without the field, respectively. ED is one of the nonlinear effects such as electro-optic Kerr effect, the electrostriction, dielectrophoresis, nonlinear dielectric effect (NDE). Ed is found to be very sensitive to hydrogen-bonded liquids. It has been applied to study pure liquids, binary mixtures, alcohols, and non-ionic surfactants such as Triton X-100. The signs of EDE (R), Kerr constant (B) and NDE (Δε/F2) are compared and contrasted. A few models have been used to calculate R with limited success. Not only can ED be used with smaller molecules but it should also be a potential tool to study polymer solutions and supramolecular assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P. (1984) Electrodynamics of Continuous Media 2nd Ed. Butterworth-Heinemann, Oxford, pp. 51–54.

    Google Scholar 

  2. Corson, D.R. and Lorrain, P. (1962) Introduction to Electromagnetic fields and Waves, Freeman San Francisco, p.117.

    MATH  Google Scholar 

  3. Guggenheim, E.A. (1967) Thermodynamics, 5th Ed., North Holland, Amsterdam, p.335.

    Google Scholar 

  4. Rappon, M. (1985) Electrodilatometry of simple liquids, Chem. Phys. Lett. 118, 340–344.

    Article  ADS  Google Scholar 

  5. Buckingham, A.D. (1976) Electric birefringence in gases and liquids, in O’Konski, C.T. (ed.), Pt I. Molecular Electro-Optics, Dekker, New York, pp. 27–62.

    Google Scholar 

  6. Kielich, S. (1972) in Dielectric and related molecular processes, Davies M. (ed.), Vol.1, The Chemical Society, London, p. 192.

    Chapter  Google Scholar 

  7. Hellemans, L. and DeMaeyer, M. (1982) High electric field effects and permittivity changes in non-dipolar liquids, J. Chem. Soc. Faraday Trans. II 78, 401–416.

    Article  Google Scholar 

  8. Pohl, H.A. (1978) Dielectrophoresis, Cambridge University Press, Cambridge.

    Google Scholar 

  9. Bloembergen, N. (1982) Nonlinear optics and spectroscopy, Rev. Mod. Phys. 54, 685–695.

    Article  ADS  Google Scholar 

  10. Buckingham, A.D. (1964) The Laws and Applications of Thermodynamics, Pergamon Press, London, p.168.

    MATH  Google Scholar 

  11. Brevik, I. and Høye, J.S. (1988) Note on the electro-dilatometric effect, Physica 149A, 206–214.

    ADS  Google Scholar 

  12. Borsarelli, C.D., Corti, H., Goldfarb, D. and Braslavsky, S.E. (1997) Structural volume change in photoinduced electron transfer reactions, J. Phys. Chem. A. 101, 7718–7724.

    Article  Google Scholar 

  13. Rappon, M. and Johns, R.M. (1999) Molecular association of pentanols in n-heptane V: electrodilatometric effect, J. Mol. Liquids 80, 65–76.

    Article  Google Scholar 

  14. Crossley, J., Morgan, B.K. and M. Rujimethabhas (Rappon) (1979) New Kerr cell for low-temperature measurements, Rev. Sci. Instrum. 50, 1400–1402.

    Article  ADS  Google Scholar 

  15. Krupkowski, T., Jones, G.P. and Davies, M. (1974) Permittivityincrements in non-dipolar solvents due to high electric fields, J. Chem. Soc. Faraday Trans. II 70, 1348–1355.

    Article  Google Scholar 

  16. Rujimethabhas (Rappon), M. and Crossley, J. (1980) Temperature dependence of electro-optic Kerr effect for liquids at 632.8 nm, Can. J. Phys. 58, 1319–1325.

    ADS  Google Scholar 

  17. Piekara, A. (1962) Dielectric saturation and hydrogen bonding, J. Chem. Phys. 36, 2145–2150.

    Article  ADS  Google Scholar 

  18. Böttcher, C.J.F. (1973) Theory of Electric Polarization, Vol.1, Elsevia, Amsterdam, pp. 289–326.

    Google Scholar 

  19. Dawber, J.G., (1984) Magneto-optical rotationstudies of liquid mixtures, J. Chem. Soc. Faraday Trans. I 80, 2133–2144.

    Article  Google Scholar 

  20. Malecki, J. (1962) Dielectric saturation in aliphatic alcohols, J. Chem. Phys. 36, 2144–2145.

    Article  ADS  Google Scholar 

  21. Rappon, M. and Greer, J. M. (1987) Molecular association of pentanols in n-heptane I: Temperature dependence of Kerr effect, J. Mol. Liquids 33, 227–244.

    Article  Google Scholar 

  22. Rappon, M. and Kaukinen, J.A. (1988) Molecular association of pentanols in n-heptane II: Viscosities as a function of temperature covering the low temperature range, J. Mol. Liquids 38, 107–133.

    Article  Google Scholar 

  23. Rappon, M. and Johns, R.M. (1989) Molecular association of pentanols in n-heptane III: Temperature and concentration dependence of proton NMR chemical shift of hydroxyl group, J. Mol. Liquids 40, 155–179.

    Article  Google Scholar 

  24. Rappon, M., Syvitski, R.T. and Ghazalli, K.M. (1994) Molecular association of pentanols in n-heptane IV: A photochromic reaction probe, J. Mol. Liquids 67, 159–179.

    Article  Google Scholar 

  25. Rappon, M. Electrodilatometry of Triton X-100 (reduced form), to be submitted for publication.

    Google Scholar 

  26. Zhu, D.-M. Feng, K.-I. and Schelly, Z.A. (1992) Reverse micelles of Triton X-100 in cyclohexane, J. Phys. Chem. 96, 2382–2385.

    Article  Google Scholar 

  27. Zhu, D.-M. and Schelly, Z.A. (1992) Investigation of the microenvironment in Triton X-100 reverse micelles in cyclohexane, using methyl orange as a probe, Langmuir 8, 48–50.

    Article  Google Scholar 

  28. Lehn, J.M. (1995) Supramolecular Chemistry, VCH, Weinhein

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Rappon, M., Johns, R.M., Lin, SW. (2004). Electrodilatometry of Liquids, Binary Liquids, and Surfactants. In: Rzoska, S.J., Zhelezny, V.P. (eds) Nonlinear Dielectric Phenomena in Complex Liquids. NATO Science Series II: Mathematics, Physics and Chemistry, vol 157. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2704-4_34

Download citation

Publish with us

Policies and ethics