Skip to main content

Rotational Brownian Motion and Nonlinear Dielectric Relaxation of Asymmetric Top Molecules in Strong Electric Fields: The Langevin Equation Approach

  • Conference paper
Nonlinear Dielectric Phenomena in Complex Liquids

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 157))

  • 1010 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa, T., Tada, M., Nakajima, K., and Seo, I. (1988) Nonlinear Dielectric Relaxation in a Vinyliden Cyanide/Vinyl Acetate Copolymer, Jpn. J. Appl. Phys. Part l 27, 200–204.

    Article  ADS  Google Scholar 

  2. Kimura, Y. and Hayakawa, R. (1992) Nonlinear Dielectric Relaxation Spectra Calculatedwith a Free Rotation model of the Dipole Moment, Jpn. J. Appl. Phys. Part I, 31, 3387–3391.

    Article  ADS  Google Scholar 

  3. Furukawa, T. and Matsumoto, K. (1992) Nonlinear Dielectric Relaxation Spectra of Polyvinyl Acetate, Jpn. J. Appl. Phys. Part I, 31, 840–845.

    Article  ADS  Google Scholar 

  4. Kimura, Y., Hara, S., and Hayakawa, R. (2000) Nonlinear Dielectric Relaxation Spectroscopy of Ferroelectric Liquid Crystals, Phys. Rev. E 62, R5907.

    Article  ADS  Google Scholar 

  5. Glazounov, A. E. and Tagantsev, A. K.. (2000) Phenomenological Model of Dynamic Nonlinear Response of Relaxor Ferroelectrics, Phys. Rev. Lett. 85, 2192–2195.

    Article  ADS  Google Scholar 

  6. Kimura, Y., Hayakawa, R., Okabe, N., and Suzuki, Y. (1996) Nonlinear Dielectric Relaxation Spectroscopy of the Antiferroelectric Liquid Crystal 4-(1-Trifluoromethyl-Pheptyloxycarbonyl) Phenyl 4-Octyloxybiphenyl-4-Carboxylate, Phys. Rev. E 53, 6080–6084.

    Article  ADS  Google Scholar 

  7. De Smet, K., Hellemans, L., Rouleau, J. F., Courteau, R., and Bose, T. K., Rotational Relaxation of Rigid Dipolar Molecules in Nonlinear Dielectric Spectra, Phys. Rev. E 57, 1384 (1998).

    Article  ADS  Google Scholar 

  8. Jadżyn, J., Kędziora, P., and Hellemans, L. (1999) Frequency Dependence of the Nonlinear Dielectric Effect in Diluted Dipolar Solutions, Phys. Lett. A 251, 49–53.

    Article  ADS  Google Scholar 

  9. Kędziora, P., Jadżyn, J., De Smet, K., and Hellemans, L. (1998) Nonlinear Dielectric Relaxation in Non-Interacting Dipolar Systems, Chem. Phys. Lett. 289, 541–545.

    Article  Google Scholar 

  10. J. Jadżyn, Kędziora, P., Hellemans, L., and De Smet, K. (1999) Relaxation of the Langevin Saturation in Dilute Solution of Mesogenic 10-TPEB molecules, Chem. Phys. Lett. 302, 337–340.

    Article  ADS  Google Scholar 

  11. Debye, P. (1929) Polar Molecules, Chemical Catalog, New York.

    MATH  Google Scholar 

  12. Perrin, F. (1934) Mouvement Brownien ďun Ellipsoïde (I). Dispersion Diélectrique pour les Molécules Ellipsoïdales, J. Phys. Radium, 5, 497–511.

    Article  MATH  Google Scholar 

  13. Favro, D. L. (1960) Theory of Rotational Brownian Motion of a Free Rigid Body, Phys. Rev. 119, 53–62.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. McConnell, J. (1981) Rotational Brownian Motion and Dielectric Theory, Academic, New York.

    Google Scholar 

  15. Watanabe, H. and Morita, A. (1984) Kerr Effect Relaxation in High Electric Fields, Adv. Chem. Phys. 56, 255–409.

    Article  Google Scholar 

  16. Déjardin, J. L., Kalmykov, Yu. P., and Déjardin, P. M. (2001) Birefringence and Dielectric Relaxation in Strong Electric Fields, Adv. Chem. Phys. 117, 275–481.

    Article  Google Scholar 

  17. Wegener, W. A., Dowben, R. M., and Koester, V. J. (1979) Time-Dependent Birefringence, Linear Dichroism, and Optical Rotation Resulting from Rigid Body Rotational Diffusion, J. Chem. Phys. 70, 622–632.

    Article  ADS  Google Scholar 

  18. Wegener, W. A. (1986) Transient Electric Birefringence of Dilute Rigid Body Suspensions at Low Field Strength, J. Chem. Phys. 84, 5989–6004.

    Article  ADS  Google Scholar 

  19. Wegener, W. A. (1986) Sinusoidale Electric Birefringence of Dilute Rigid Body Suspensions at Low Field Strength, J. Chem. Phys. 84, 6005–6012.

    Article  ADS  Google Scholar 

  20. Hosokawa, K., Shimomura, T., Furusawa, H., Kimura, Y., Ito, K., and Hayakawa, R. (1999) Two-Dimensional Spectroscopy of Electric Birefringence Relaxation in Frequency Domain: Measurement Method for Second-Order Nonlinear After-Effect Function, J. Chem. Phys. 110, 4101–4108.

    Article  ADS  Google Scholar 

  21. Kalmykov, Yu. P. (2002) Rotational Brownian Motion and Nonlinear Dielectric Relaxation of Asymmetric Top Molecules in Strong Electric Fields, Phys. Rev. E. 65, 021101–11.

    Article  ADS  Google Scholar 

  22. Coffey, W. T. and Paranjape, B. V. (1978) Dielectric and Kerr Effect Relaxation in Alternating Electric Fields, Proc. R. Ir. Acad, Sec. A, Math. Phys. Sci. 78, 17–25.

    MathSciNet  Google Scholar 

  23. Coffey, W. T., Kalmykov, Yu. P., and Waldron, J. T. (2003) The Langevin Equation with Applications in Physics, Chemistry ans Electrical Engineering, World Scientific, Singapore, 2nd edition.

    Google Scholar 

  24. Déjardin, J. L., Déjardin, P. M., Kalmykov, Yu. P., and Titov, S. V. (1999) Transient Nonlinear Dielectric Relaxation and Dynamic Kerr Effect from Sudden Changes of a Strong dc Electric Field: Polar and Polarizable Molecules, Phys. Rev. E 60, 1475.

    Article  ADS  Google Scholar 

  25. Alexiewicz, W. (2000) Solution of the Smoluchowski Equation for Rotational Diffusion of Rigid Dipolar and Symmetric-Top Molecules in Dilute Solvents, Acta Phys. Pol. B 31, 1051–1062.

    ADS  Google Scholar 

  26. Rose, M. E. (1957) Elementary Theory of Angular Momentum, Wiley, New York.

    MATH  Google Scholar 

  27. Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. (1998) Quantum Theory of Angular Momentum, World Scientific, Singapore.

    Google Scholar 

  28. Brenner, H. and Condiff, D. W. (1972), Transport Mechanics in Systems of Orientable Particles III. Arbitrary Particles, J. Colloid Interface Sci. 41, 228–274.

    Article  Google Scholar 

  29. Stratonovich, R. L. (1968) Conditional Markov Processes and Their Application to the Theory of Optimal Control, Elsevier, New York.

    MATH  Google Scholar 

  30. Lee, D. H. and McClung, R. E. D. (1987) The Fokker-Planck-Langevin Model for Rotational Brownian Motion IV. Asymmetric Top Molecules, Chem. Phys. 112, 23–41.

    Article  Google Scholar 

  31. Huntress, W. T. (1970) The Study of Anisotropic Rotation of Molecules in Liquids by NMR Quadrupolar Relaxation, Adv. Magn. Reson. 4, 1–37.

    Google Scholar 

  32. Rosato, V. and Williams, G. (1981) Dynamic Kerr-Effect and Dielectric Relaxation of Polarizable dipolar Molecules, J. Chem. Soc., Faraday Trans. 2, 77, 1767–1778.

    Article  Google Scholar 

  33. Kalmykov, Yu. P. and Titov, S. V. (1998) The Complex Magnetic Susceptibility of Uniaxial Superparamagnetic particles in a High Constant Magnetic Field, Fiz. Tverd. Tela (St. Petersburg) 40, 1642–1649 [(1998) Phys. Solid State, 40, 1492–1499].

    Google Scholar 

  34. Kalmykov, Yu. P., Titov, S. V., and Coffey, W. T. (1998) Longitudinal Complex Magnetic Susceptibility and Relaxation Time of Superparamagnetic Particles with Cubic Magnetic Anisotropy, Phys. Rev. B 58, 3267–2376.

    Article  ADS  Google Scholar 

  35. Kalmykov, Yu. P. and Titov, S. V. (1999) Longitudinal Dynamic Susceptibility of Superparamagnetic Particles with Cubic Anisotropy, Zh. Eksp. Teor. Fiz. 115, 101–114 [(1999) JETP, 88, 58–65].

    Google Scholar 

  36. Nordio, P. L., Rigatti, G., and Segre, U. (1973) Dielectric Relaxation Theory in Nematic Liquids, 25, 129–136.

    Google Scholar 

  37. Freed, J. H. (1964) Anisotropic Rotational Diffusion and Electron Spin Resonance Linewidths, J. Chem. Phys. 41, 2077–2083.

    Article  ADS  Google Scholar 

  38. Wegener, W. A. (1981) Diffusion Coefficients for Rigid Macromolecules with Irregular Shapes that Allow Rotational-Translational Coupling, Biopolymers 20, 303–326.

    Article  Google Scholar 

  39. Scherer, C. and Matuttis, H. G. (2001) Rotational Dynamics of Magnetic Particles in Suspensions, Phys. Rev. E 63, 011504–7.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Kalmykov, Y.P. (2004). Rotational Brownian Motion and Nonlinear Dielectric Relaxation of Asymmetric Top Molecules in Strong Electric Fields: The Langevin Equation Approach. In: Rzoska, S.J., Zhelezny, V.P. (eds) Nonlinear Dielectric Phenomena in Complex Liquids. NATO Science Series II: Mathematics, Physics and Chemistry, vol 157. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2704-4_3

Download citation

Publish with us

Policies and ethics